This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142238 Numerators of continued fraction convergents to sqrt(3/2). 10
 1, 5, 11, 49, 109, 485, 1079, 4801, 10681, 47525, 105731, 470449, 1046629, 4656965, 10360559, 46099201, 102558961, 456335045, 1015229051, 4517251249, 10049731549, 44716177445, 99482086439, 442644523201, 984771132841, 4381729054565, 9748229241971 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Charlie Marion, Jan 07 2009: (Start) In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows: a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1)+a(k,2n-2) and a(k,2n+1)=(2k)*a(k,2n)+a(k,2n-1); b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1)+b(k,2n-2) and b(k,2n+1)=(2k)*b(k,2n)+b(k,2n-1). For example, the convergents to sqrt(3/2) start 1/1, 5/4, 11/9, 49/40, 109/89. In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then k*a(k,2n)^2-a(k,2n-1)*a(k,2n+1)=k=k*a(k,2n-2)*a(k,2n)-a(k,2n-1)^2 and b(k,2n-1)*b(k,2n+1)-k*b(k,2n)^2=k+1=b(k,2n-1)^2-k*b(k,2n-2)*b(k,2n); for example, if k=2 and n=3, then b(2,n)=a(n) and 2*a(2,6)^2-a(2,5)*a(2,7)=2*881^2-396*3920=2; 2*a(2,4)*a(2,6)-a(2,5)^2=2*89*881-396^2=2; b(2,5)*b(2,7)-2*b(2,6)^2=485*4801-2*1079^2=3; b(2,5)^2-2*b(2,4)*b(2,6)=485^2-2*109*1079=3. Cf. A000129, A001333, A142239, A153313-153318. (End) LINKS Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1). FORMULA G.f.'s for numerators and denominators are -(1+5*x+x^2-x^3)/(-1-x^4+10*x^2) and -(1+4*x-x^2)/(-1-x^4+10*x^2). A142238(2n) = A041006(2n)/2 = A054320(n), A142238(2n-1) = A041006(2n-1) = A041038(2n-1) = A001079(n). - M. F. Hasler, Feb 14 2009 EXAMPLE The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ... MAPLE with(numtheory): cf := cfrac (sqrt(3)/sqrt(2), 100): [seq(nthnumer(cf, i), i=0..50)]; [seq(nthdenom(cf, i), i=0..50)]; [seq(nthconver(cf, i), i=0..50)]; MATHEMATICA Numerator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *) LinearRecurrence[{0, 10, 0, -1}, {1, 5, 11, 49}, 30] (* Harvey P. Dale, Dec 30 2017 *) PROG (PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, 0, 10, 0]^n*[1; 5; 11; 49])[1, 1] \\ Charles R Greathouse IV, Jun 21 2015 CROSSREFS Cf. A115754, A142239. Sequence in context: A097743 A176609 A041213 * A149514 A149515 A149516 Adjacent sequences:  A142235 A142236 A142237 * A142239 A142240 A142241 KEYWORD nonn,frac,easy AUTHOR N. J. A. Sloane, Oct 05 2008, following a suggestion from Rob Miller (rmiller(AT)AmtechSoftware.net) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)