login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153315
Denominators of continued fraction convergents to sqrt(5/4).
3
1, 8, 17, 144, 305, 2584, 5473, 46368, 98209, 832040, 1762289, 14930352, 31622993, 267914296, 567451585, 4807526976, 10182505537, 86267571272, 182717648081, 1548008755920, 3278735159921, 27777890035288, 58834515230497, 498454011879264, 1055742538989025
OFFSET
0,2
COMMENTS
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
a(k,0) = 1, a(k,1) = 2k; for n > 0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2)
and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
b(k,0) = 1, b(k,1) = 2k+1; for n > 0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2)
and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(4/3) start 1/1, 9/8, 19/17, 161/144, 341/305.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=4 and n=3, then a(4,n)=a(n) and
4*a(4,6)^2 - a(4,5)*a(4,7) = 4*5473^2 - 2584*46368 = 4;
4*a(4,4)*a(4,6) - a(4,5)^2 = 4*305*5473 - 2584^2 = 4;
b(4,5)*b(4,7) - 4*b(4,6)^2 = 2889*51841 - 4*6119^2 = 5;
b(4,5)^2 - 4*b(4,4)*b(4,6) = 2889^2 - 4*341*6119 = 5.
FORMULA
For n > 0, a(2n) = 2a(2n-1) + a(2n-2) and a(2n+1) = 8a(2n) + a(2n-1).
Empirical g.f.: (1 + 8*x - x^2)/(1 - 18*x^2 + x^4). - Colin Barker, Jan 01 2012
a(n) = (3 - (-1)^n)*Fibonacci(3*(n + 1))/4. - Ehren Metcalfe, Apr 04 2019
EXAMPLE
The initial convergents are 1, 9/8, 19/17, 161/144, 341/305, 2889/2584, 6119/5473, 51841/46368, 109801/98209, 930249/832040, 1970299/1762289, ...
MATHEMATICA
Denominator[Convergents[Sqrt[5/4], 30]] (* Harvey P. Dale, Aug 17 2012 *)
KEYWORD
nonn,frac,easy
AUTHOR
Charlie Marion, Jan 07 2009
EXTENSIONS
Corrected and extended by Harvey P. Dale, Aug 17 2012
STATUS
approved