login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041126
Numerators of continued fraction convergents to sqrt(72).
2
8, 17, 280, 577, 9512, 19601, 323128, 665857, 10976840, 22619537, 372889432, 768398401, 12667263848, 26102926097, 430314081400, 886731088897, 14618011503752, 30122754096401, 496582077046168, 1023286908188737, 16869172608065960, 34761632124320657
OFFSET
0,1
FORMULA
G.f.: -(x+1)*(x^2-9*x-8) / ((x^2-6*x+1)*(x^2+6*x+1)). - Colin Barker, Nov 05 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a1(n),a0(n)] for n>0:
a0(n) = (-4+3*sqrt(2))*(17+12*sqrt(2))^n-((4+3*sqrt(2))/(17+12*sqrt(2))^n).
a1(n) = (1/(17+12*sqrt(2))^n+(17+12*sqrt(2))^n)/2. (End)
MATHEMATICA
Numerator[Convergents[Sqrt[72], 30]] (* Vincenzo Librandi, Oct 29 2013 *)
a0[n_] := (-4+3*Sqrt[2])*(17+12*Sqrt[2])^n-((4+3*Sqrt[2])/(17+12*Sqrt[2])^n) // Simplify
a1[n_] := (1/(17+12*Sqrt[2])^n+(17+12*Sqrt[2])^n)/2 // FullSimplify
Flatten[MapIndexed[{a0[#], a1[#]} &, Range[20]]] (* Gerry Martens, Jul 11 2015 *)
CROSSREFS
Sequence in context: A088588 A041537 A153315 * A248289 A176823 A316199
KEYWORD
nonn,cofr,frac,easy
EXTENSIONS
More terms from Colin Barker, Nov 05 2013
STATUS
approved