login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041127
Denominators of continued fraction convergents to sqrt(72).
2
1, 2, 33, 68, 1121, 2310, 38081, 78472, 1293633, 2665738, 43945441, 90556620, 1492851361, 3076259342, 50713000833, 104502261008, 1722749176961, 3550000614930, 58522759015841, 120595518646612, 1988051057361633, 4096697633369878, 67535213191279681
OFFSET
0,2
FORMULA
G.f.: -(x^2-2*x-1) / ((x^2-6*x+1)*(x^2+6*x+1)). - Colin Barker, Nov 13 2013
a(n) = 34*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 11 2013
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
a0(n) = ((3+2*sqrt(2))/(17+12*sqrt(2))^n+(3-2*sqrt(2))*(17+12*sqrt(2))^n)/6.
a1(n) = (-1/(17+12*sqrt(2))^n+(17+12*sqrt(2))^n)/(12*sqrt(2)). (End)
MATHEMATICA
Denominator/@Convergents[Sqrt[72], 50] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
CoefficientList[Series[(1 + 2 x - x^2)/(x^4 - 34 x^2 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
a0[n_] := ((3+2*Sqrt[2])/(17+12*Sqrt[2])^n+(3-2*Sqrt[2])*(17+ 12*Sqrt[2])^n)/6 // Simplify
a1[n_] := (-1/(17+12*Sqrt[2])^n+(17+12*Sqrt[2])^n)/(12*Sqrt[2]) // FullSimplify
Flatten[MapIndexed[{a0[#], a1[#]}&, Range[20]]] (* Gerry Martens, Jul 10 2015 *)
PROG
(PARI) a(n)=my(v=contfrac(sqrt(72), n), s=v[n]); forstep(k=n-1, 1, -1, s=v[k]+1/s); denominator(s) \\ Charles R Greathouse IV, Jul 05 2011
(Magma) I:=[1, 2, 33, 68]; [n le 4 select I[n] else 34*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
CROSSREFS
KEYWORD
nonn,frac,easy
STATUS
approved