

A020829


Decimal expansion of 1/sqrt(72) = 1/(3*2^(3/2)) = sqrt(2)/12.


7



1, 1, 7, 8, 5, 1, 1, 3, 0, 1, 9, 7, 7, 5, 7, 9, 2, 0, 7, 3, 3, 4, 7, 4, 0, 6, 0, 3, 5, 0, 8, 0, 8, 1, 7, 3, 2, 1, 4, 1, 3, 9, 3, 2, 2, 9, 4, 8, 0, 7, 9, 0, 0, 6, 0, 9, 8, 0, 5, 6, 6, 4, 4, 8, 3, 2, 5, 6, 1, 0, 3, 9, 8, 7, 1, 8, 4, 2, 2, 5, 3, 2, 3, 7, 5, 3, 2, 2, 9, 4, 5, 2, 7, 3, 0, 3, 4, 6, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Volume of regular tetrahedron with unit edge.  Stanislav Sykora, May 31 2012
In the dragon curve fractal, (5/6)*sqrt(2) = 1.1785.... is the maximum distance of any point from curve start. Such a maximum must be to a vertex of the convex hull. Hull vertices are shown by Benedek and Panzone (theorem 3, page 85) and their P8 = 7/6  (1/6)i at distance sqrt((7/6)^2 + (1/6)^2) is the maximum.  Kevin Ryde, Nov 22 2019


LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..1000
Agnes I. Benedek and Rafael Panzone, On Some Notable Plane Sets, II: Dragons, Revista de la Unión Matemática Argentina, volume 39, numbers 12, 1994, pages 7690.
Wikipedia, Tetrahedron
Wikipedia, Platonic solid


EXAMPLE

0.117851130197757920733474...


MATHEMATICA

RealDigits[sqrt(2)/12, 10, 50][[1]] (* G. C. Greubel, Jul 06 2017 *)


PROG

(PARI) sqrt(2)/12 \\ G. C. Greubel, Jul 06 2017


CROSSREFS

Cf. A131594 (regular octahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).
Sequence in context: A307065 A195340 A019794 * A109916 A277053 A076415
Adjacent sequences: A020826 A020827 A020828 * A020830 A020831 A020832


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane


STATUS

approved



