This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153316 Numerators of continued fraction convergents to sqrt(5/4). 3
 1, 9, 19, 161, 341, 2889, 6119, 51841, 109801, 930249, 1970299, 16692641, 35355581, 299537289, 634430159, 5374978561, 11384387281, 96450076809, 204284540899, 1730726404001, 3665737348901, 31056625195209, 65778987739319, 557288527109761, 1180356041958841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows: a(k,0) = 1, a(k,1) = 2k; for n > 0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1); b(k,0) = 1, b(k,1) = 2k+1; for n > 0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1). For example, the convergents to sqrt(4/3) start 1/1, 9/8, 19/17, 161/144, 341/305. In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n); for example, if k=4 and n=3, then b(4,n)=a(n) and 4*a(4,6)^2 - a(4,5)*a(4,7) = 4*5473^2 - 2584*46368 = 4; 4*a(4,4)*a(4,6) - a(4,5)^2 = 4*305*5473 - 2584^2 = 4; b(4,5)*b(4,7) - 4*b(4,6)^2 = 2889*51841 - 4*6119^2 = 5; b(4,5)^2 - 4*b(4,4)*b(4,6) = 2889^2 - 4*341*6119 = 5. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,18,0,-1). FORMULA For n > 0, a(2*n) = 2*a(2*n-1) + a(2*n-2) and a(2*n+1) = 8*a(2*n) + a(2*n-1). G.f.: (1 + 9*x + x^2 - x^3) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)). - Colin Barker, Jan 01 2012 From Colin Barker, Mar 27 2016: (Start) a(n) = ((5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + 15*(2+sqrt(5))^n + 6*sqrt(5)*(2+sqrt(5))^n + 3*(2-sqrt(5))^n*(-5+2*sqrt(5)) - (-2-sqrt(5))^n*(5+2*sqrt(5))))/(8*sqrt(5)). a(n) = 18*a(n-2) - a(n-4) for n > 3. (End) a(n) = (3 - (-1)^n)*Lucas(3*(n + 1))/8. - Ehren Metcalfe, Apr 04 2019 EXAMPLE The initial convergents are 1, 9/8, 19/17, 161/144, 341/305, 2889/2584, 6119/5473, 1841/46368, 109801/98209, 930249/832040, 1970299/1762289. PROG (PARI) Vec((1+9*x+x^2-x^3)/((1+4*x-x^2)*(1-4*x-x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016 CROSSREFS Cf. A000129, A001333, A142238-A142239, A153313, A153314, A153315, A153317, A153318. Sequence in context: A240120 A177179 A041677 * A041160 A248305 A089565 Adjacent sequences:  A153313 A153314 A153315 * A153317 A153318 A153319 KEYWORD nonn,easy AUTHOR Charlie Marion, Jan 07 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)