The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153316 Numerators of continued fraction convergents to sqrt(5/4). 3
 1, 9, 19, 161, 341, 2889, 6119, 51841, 109801, 930249, 1970299, 16692641, 35355581, 299537289, 634430159, 5374978561, 11384387281, 96450076809, 204284540899, 1730726404001, 3665737348901, 31056625195209, 65778987739319, 557288527109761, 1180356041958841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows: a(k,0) = 1, a(k,1) = 2k; for n > 0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1); b(k,0) = 1, b(k,1) = 2k+1; for n > 0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1). For example, the convergents to sqrt(4/3) start 1/1, 9/8, 19/17, 161/144, 341/305. In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n); for example, if k=4 and n=3, then b(4,n)=a(n) and 4*a(4,6)^2 - a(4,5)*a(4,7) = 4*5473^2 - 2584*46368 = 4; 4*a(4,4)*a(4,6) - a(4,5)^2 = 4*305*5473 - 2584^2 = 4; b(4,5)*b(4,7) - 4*b(4,6)^2 = 2889*51841 - 4*6119^2 = 5; b(4,5)^2 - 4*b(4,4)*b(4,6) = 2889^2 - 4*341*6119 = 5. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,18,0,-1). FORMULA For n > 0, a(2*n) = 2*a(2*n-1) + a(2*n-2) and a(2*n+1) = 8*a(2*n) + a(2*n-1). G.f.: (1 + 9*x + x^2 - x^3) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)). - Colin Barker, Jan 01 2012 From Colin Barker, Mar 27 2016: (Start) a(n) = ((5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + 15*(2+sqrt(5))^n + 6*sqrt(5)*(2+sqrt(5))^n + 3*(2-sqrt(5))^n*(-5+2*sqrt(5)) - (-2-sqrt(5))^n*(5+2*sqrt(5))))/(8*sqrt(5)). a(n) = 18*a(n-2) - a(n-4) for n > 3. (End) a(n) = (3 - (-1)^n)*Lucas(3*(n + 1))/8. - Ehren Metcalfe, Apr 04 2019 EXAMPLE The initial convergents are 1, 9/8, 19/17, 161/144, 341/305, 2889/2584, 6119/5473, 1841/46368, 109801/98209, 930249/832040, 1970299/1762289. PROG (PARI) Vec((1+9*x+x^2-x^3)/((1+4*x-x^2)*(1-4*x-x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016 CROSSREFS Cf. A000129, A001333, A142238-A142239, A153313, A153314, A153315, A153317, A153318. Sequence in context: A177179 A335782 A041677 * A041160 A248305 A089565 Adjacent sequences:  A153313 A153314 A153315 * A153317 A153318 A153319 KEYWORD nonn,easy AUTHOR Charlie Marion, Jan 07 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 8 13:26 EDT 2021. Contains 343666 sequences. (Running on oeis4.)