login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153316 Numerators of continued fraction convergents to sqrt(5/4). 3
1, 9, 19, 161, 341, 2889, 6119, 51841, 109801, 930249, 1970299, 16692641, 35355581, 299537289, 634430159, 5374978561, 11384387281, 96450076809, 204284540899, 1730726404001, 3665737348901, 31056625195209, 65778987739319, 557288527109761, 1180356041958841 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:

a(k,0) = 1, a(k,1) = 2k; for n > 0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2)

and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);

b(k,0) = 1, b(k,1) = 2k+1; for n > 0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2)

and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).

For example, the convergents to sqrt(4/3) start 1/1, 9/8, 19/17, 161/144, 341/305.

In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then

k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and

b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);

for example, if k=4 and n=3, then b(4,n)=a(n) and

4*a(4,6)^2 - a(4,5)*a(4,7) = 4*5473^2 - 2584*46368 = 4;

4*a(4,4)*a(4,6) - a(4,5)^2 = 4*305*5473 - 2584^2 = 4;

b(4,5)*b(4,7) - 4*b(4,6)^2 = 2889*51841 - 4*6119^2 = 5;

b(4,5)^2 - 4*b(4,4)*b(4,6) = 2889^2 - 4*341*6119 = 5.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,18,0,-1).

FORMULA

For n > 0, a(2*n) = 2*a(2*n-1) + a(2*n-2) and a(2*n+1) = 8*a(2*n) + a(2*n-1).

G.f.: (1 + 9*x + x^2 - x^3) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)). - Colin Barker, Jan 01 2012

From Colin Barker, Mar 27 2016: (Start)

a(n) = ((5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + 15*(2+sqrt(5))^n + 6*sqrt(5)*(2+sqrt(5))^n + 3*(2-sqrt(5))^n*(-5+2*sqrt(5)) - (-2-sqrt(5))^n*(5+2*sqrt(5))))/(8*sqrt(5)).

a(n) = 18*a(n-2) - a(n-4) for n > 3.

(End)

a(n) = (3 - (-1)^n)*Lucas(3*(n + 1))/8. - Ehren Metcalfe, Apr 04 2019

EXAMPLE

The initial convergents are 1, 9/8, 19/17, 161/144, 341/305, 2889/2584, 6119/5473, 1841/46368, 109801/98209, 930249/832040, 1970299/1762289.

PROG

(PARI) Vec((1+9*x+x^2-x^3)/((1+4*x-x^2)*(1-4*x-x^2)) + O(x^30)) \\ Colin Barker, Mar 27 2016

CROSSREFS

Cf. A000129, A001333, A142238-A142239, A153313, A153314, A153315, A153317, A153318.

Sequence in context: A240120 A177179 A041677 * A041160 A248305 A089565

Adjacent sequences:  A153313 A153314 A153315 * A153317 A153318 A153319

KEYWORD

nonn,easy

AUTHOR

Charlie Marion, Jan 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 18:37 EST 2019. Contains 329865 sequences. (Running on oeis4.)