login
Numerators of continued fraction convergents to sqrt(5/4).
3

%I #20 Apr 05 2019 12:23:40

%S 1,9,19,161,341,2889,6119,51841,109801,930249,1970299,16692641,

%T 35355581,299537289,634430159,5374978561,11384387281,96450076809,

%U 204284540899,1730726404001,3665737348901,31056625195209,65778987739319,557288527109761,1180356041958841

%N Numerators of continued fraction convergents to sqrt(5/4).

%C In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:

%C a(k,0) = 1, a(k,1) = 2k; for n > 0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2)

%C and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);

%C b(k,0) = 1, b(k,1) = 2k+1; for n > 0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2)

%C and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).

%C For example, the convergents to sqrt(4/3) start 1/1, 9/8, 19/17, 161/144, 341/305.

%C In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then

%C k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and

%C b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);

%C for example, if k=4 and n=3, then b(4,n)=a(n) and

%C 4*a(4,6)^2 - a(4,5)*a(4,7) = 4*5473^2 - 2584*46368 = 4;

%C 4*a(4,4)*a(4,6) - a(4,5)^2 = 4*305*5473 - 2584^2 = 4;

%C b(4,5)*b(4,7) - 4*b(4,6)^2 = 2889*51841 - 4*6119^2 = 5;

%C b(4,5)^2 - 4*b(4,4)*b(4,6) = 2889^2 - 4*341*6119 = 5.

%H Colin Barker, <a href="/A153316/b153316.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,18,0,-1).

%F For n > 0, a(2*n) = 2*a(2*n-1) + a(2*n-2) and a(2*n+1) = 8*a(2*n) + a(2*n-1).

%F G.f.: (1 + 9*x + x^2 - x^3) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)). - Colin Barker, Jan 01 2012

%F From _Colin Barker_, Mar 27 2016: (Start)

%F a(n) = ((5*(-2+sqrt(5))^n - 2*sqrt(5)*(-2+sqrt(5))^n + 15*(2+sqrt(5))^n + 6*sqrt(5)*(2+sqrt(5))^n + 3*(2-sqrt(5))^n*(-5+2*sqrt(5)) - (-2-sqrt(5))^n*(5+2*sqrt(5))))/(8*sqrt(5)).

%F a(n) = 18*a(n-2) - a(n-4) for n > 3.

%F (End)

%F a(n) = (3 - (-1)^n)*Lucas(3*(n + 1))/8. - _Ehren Metcalfe_, Apr 04 2019

%e The initial convergents are 1, 9/8, 19/17, 161/144, 341/305, 2889/2584, 6119/5473, 1841/46368, 109801/98209, 930249/832040, 1970299/1762289.

%o (PARI) Vec((1+9*x+x^2-x^3)/((1+4*x-x^2)*(1-4*x-x^2)) + O(x^30)) \\ _Colin Barker_, Mar 27 2016

%Y Cf. A000129, A001333, A142238-A142239, A153313, A153314, A153315, A153317, A153318.

%K nonn,easy

%O 0,2

%A _Charlie Marion_, Jan 07 2009