login
A041160
Numerators of continued fraction convergents to sqrt(90).
2
9, 19, 351, 721, 13329, 27379, 506151, 1039681, 19220409, 39480499, 729869391, 1499219281, 27715816449, 56930852179, 1052471155671, 2161873163521, 39966188099049, 82094249361619, 1517662676608191
OFFSET
0,1
FORMULA
G.f.: (1 + x)*(9 + 10*x - x^2) / (1 - 38*x^2 + x^4). [Bruno Berselli, Oct 30 2013]
a(n) = (2+(-1)^n)*((3-sqrt(10))^(n+1)+(3+sqrt(10))^(n+1))/2. [Bruno Berselli, Oct 30 2013]
MATHEMATICA
Numerator[Convergents[Sqrt[90], 30]] (* Vincenzo Librandi, Oct 29 2013 *)
Table[(2 + (-1)^n) ((3 - Sqrt[10])^(n + 1) + (3 + Sqrt[10])^(n + 1))/2, {n, 0, 30}] (* Bruno Berselli, Oct 30 2013 *)
LinearRecurrence[{0, 38, 0, -1}, {9, 19, 351, 721}, 30] (* Harvey P. Dale, May 12 2018 *)
CROSSREFS
Sequence in context: A335782 A041677 A153316 * A248305 A089565 A001154
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved