login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181443
Solutions a(n) to (r(n)-5)*(r(n)-6) = 21 *a(n)*(a(n)-1).
1
1, 2, 5, 22, 34, 161, 494, 2365, 3685, 17654, 54281, 260074, 405262, 1941725, 5970362, 28605721, 44575081, 213572042, 656685485, 3146369182, 4902853594, 23490982841, 72229432934, 346072004245, 539269320205, 2583794540414, 7944580937201, 38064774097714, 59314722368902, 284193908462645, 873831673659122, 4186779078744241, 6524080191258961, 31258746136350482, 96113539521566165, 460507633887768742, 717589506316116754
OFFSET
0,2
COMMENTS
The associated r(n) are in A180509, which gives a combinatorial interpretation of the pairs (r(n),a(n)).
FORMULA
G.f. ( -1-x-3*x^2-17*x^3+98*x^4-17*x^5-3*x^6-x^7-x^8 ) / ( (x-1)*(x^8-110*x^4+1) ). - R. J. Mathar, Feb 05 2011
Explicit formulas: r=sqrt(21), s=55+12*r, t=55-12*r:
a(4*n)=(42+(21+r)*s^n+(21-r)*t^n)/84.
a(4*n+1)=(42+(63+13*r)*s^n+(63-13*r)*t^n)/84.
a(4*n+2)=(42+(189+41*r)*s^n+(189-41*r)*t^n)/84.
a(4*n+3)=(42+(903+197*r)*s^n+(903-197*r)*t^n)/84.
a(n) = 111*a(n-4) - 111*a(n-8) + a(n-12).
a(n) = +a(n-1) +110*a(n-4) -110*a(n-5) -a(n-8) +a(n-9). - R. J. Mathar, Jan 05 2011
EXAMPLE
For n=2: a(2)=5; b(2)=26; binomial(26,7)=657800; binomial(26,5)*binomial(5,2)=657800.
MAPLE
n:=0: for s from 1 to 100 do r:=(sqrt(84*s^2-84*s+1)+11)/2: if (floor(r)=r) then a[n]:=s: b[n]:=r: n:=n+1: end if: end do:
MATHEMATICA
LinearRecurrence[{1, 0, 0, 110, -110, 0, 0, -1, 1}, {1, 2, 5, 22, 34, 161, 494, 2365, 3685}, 40] (* Harvey P. Dale, Aug 03 2024 *)
CROSSREFS
Sequence in context: A024600 A131510 A357020 * A041165 A041006 A346557
KEYWORD
nonn
AUTHOR
Paul Weisenhorn, Jan 29 2011
STATUS
approved