login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181444
G.f. satisfies: A(x) = 1 + x*Sum_{n>=0} log( A(2^n*x)^2 )^n/n!.
4
1, 1, 4, 60, 2480, 242296, 53763904, 28363717952, 41396018951936, 215328934357721024, 4740698193856769942528, 430771050114778618253200384, 151994706469390446336698323709952
OFFSET
0,3
FORMULA
a(n+1) = [x^n] A(x)^(2^(n+1)) for n>=0, with a(0)=1, where A(x) = Sum_{n>=0} a(n)*x^n.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 60*x^3 + 2480*x^4 + 242296*x^5 +...
A(x) = 1 + x*[1 + log(A(2x)^2) + log(A(4x)^2)^2/2! + log(A(8x)^2)^3/3! + log(A(16x)^2)^4/4! + log(A(32x)^2)^5/5! +...].
Coefficients in the 2^n-th powers of A(x) begin:
A^(2^0)=[1, 1, 4, 60, 2480, 242296, 53763904, 28363717952,...];
A^(2^1)=[(1), 2, 9, 128, 5096, 490032, 108035840, 56837199680,...];
A^(2^2)=[1,(4), 22, 292, 10785, 1002752, 218139920, 114116667872,...];
A^(2^3)=[1, 8,(60), 760, 24390, 2104632, 444861660, 230028874632,...];
A^(2^4)=[1, 16, 184,(2480), 64540, 4690704, 926901832,...];
A^(2^5)=[1, 32, 624, 10848,(242296), 12359328, 2033807312,...];
A^(2^6)=[1, 64, 2272, 61632, 1568240,(53763904), 5278676128,...];
A^(2^7)=[1, 128, 8640, 414080, 16187360, 588318336,(28363717952),...];
A^(2^8)=[1, 256, 33664, 3040000, 213028800, 12475903232, 658516757120,(41396018951936),...]; ...
where the diagonal terms in parenthesis form this sequence (shift left).
The third column of this table is given by A257272 (observation by Bruno Berselli). - M. F. Hasler, Apr 27 2015
PROG
(PARI) {a(n)=local(A=1+sum(m=1, n-1, a(m)*x^m)); polcoeff(1+x*sum(m=0, n, log(subst(A^2, x, 2^m*x)+x*O(x^n))^m/m!), n)}
CROSSREFS
Sequence in context: A099705 A012488 A374887 * A177780 A012567 A132627
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 22 2010
STATUS
approved