login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177780
E.g.f. satisfies: L(x) = x*Sum_{n>=0} (2^n/n!)*Product_{k=0..n-1} L(3^k*x).
3
1, 4, 60, 2496, 276240, 83893248, 72508524480, 182341191057408, 1348995112077074688, 29528107099434111467520, 1918583757808453356238126080, 370812729559366641806998574727168
OFFSET
1,2
COMMENTS
More generally, we have the following conjecture.
Define the series E(,) and L(,) by:
E(x,q) = Sum_{n>=0} q^(n(n-1)/2)*x^n/n!,
L(x,q) = x*d/dx log(E(x,q)) = x*E'(x,q)/E(x,q),
then L(x,q) satisfies:
L(x,q) = x*Sum_{n>=0} (q-1)^n/n! * Product_{k=0..n-1} L(q^k*x,q),
1/E(x,q) = Sum_{n>=0} (-1)^n/n! * Product_{k=0..n-1} L(q^k*x,q).
FORMULA
a(n) = n*A054941(n), where A054941(n) is the number of connected oriented graphs on n nodes.
Define the series E(x) and L(x) by:
E(x) = Sum_{n>=0} 3^(n(n-1)/2)*x^n/n!,
L(x) = x*d/dx log(E(x)) = x*E'(x)/E(x),
then L(x) satisfies:
L(x) = x*Sum_{n>=0} 2^n/n! * Product_{k=0..n-1} L(3^k*x),
1/E(x) = Sum_{n>=0} (-1)^n/n! * Product_{k=0..n-1} L(3^k*x).
EXAMPLE
E.g.f.: L(x) = x + 4*x^2/2! + 60*x^3/3! + 2496*x^4/4! + 276240*x^5/5! + ... + n*A054941(n)*x^n/n! + ...
Given the related expansions:
E(x) = 1 + x + 3*x^2/2! + 27*x^3/3! + 729*x^4/4! + 59049*x^5/5! + ...
log(E(x)) = x + 2*x^2/2! + 20*x^3/3! + 624*x^4/4! + 55248*x^5/5! + ... + A054941(n)*x^n/n! + ...
then L(x) satisfies:
L(x)/x = 1 + 2*L(x) + 2^2*L(x)L(3x)/2! + 2^3*L(x)L(3x)L(9x)/3! + 2^4*L(x)L(3x)L(9x)L(27x)/4! + ...
1/E(x) = 1 - L(x) + L(x)L(3x)/2! - L(x)L(3x)L(9x)/3! + L(x)L(3x)L(9x)L(27x)/4! -+ ...
MATHEMATICA
m = 13; A[_] = 0; Do[A[x_] = x Sum[2^n/n! Product[A[3^k x], {k, 0, n-1}], {n, 0, m}] + O[x]^m // Normal, {m}]; CoefficientList[A[x]/x, x] * Range[1, m-1]! (* Jean-François Alcover, Nov 03 2019 *)
PROG
(PARI) {a(n, q=3)=local(Lq=x+x^2); for(i=1, n, Lq=x*sum(m=0, n, (q-1)^m/m!*prod(k=0, m-1, subst(Lq, x, q^k*x+x*O(x^n))))); n!*polcoeff(Lq, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 20 2010
STATUS
approved