OFFSET
1,2
COMMENTS
More generally, we have the following conjecture.
Define the series E(,) and L(,) by:
E(x,q) = Sum_{n>=0} q^(n(n-1)/2)*x^n/n!,
L(x,q) = x*d/dx log(E(x,q)) = x*E'(x,q)/E(x,q),
then L(x,q) satisfies:
L(x,q) = x*Sum_{n>=0} (q-1)^n/n! * Product_{k=0..n-1} L(q^k*x,q),
1/E(x,q) = Sum_{n>=0} (-1)^n/n! * Product_{k=0..n-1} L(q^k*x,q).
FORMULA
Define the series E(x) and L(x) by:
E(x) = Sum_{n>=0} 3^(n(n-1)/2)*x^n/n!,
L(x) = x*d/dx log(E(x)) = x*E'(x)/E(x),
then L(x) satisfies:
L(x) = x*Sum_{n>=0} 2^n/n! * Product_{k=0..n-1} L(3^k*x),
1/E(x) = Sum_{n>=0} (-1)^n/n! * Product_{k=0..n-1} L(3^k*x).
EXAMPLE
E.g.f.: L(x) = x + 4*x^2/2! + 60*x^3/3! + 2496*x^4/4! + 276240*x^5/5! + ... + n*A054941(n)*x^n/n! + ...
Given the related expansions:
E(x) = 1 + x + 3*x^2/2! + 27*x^3/3! + 729*x^4/4! + 59049*x^5/5! + ...
log(E(x)) = x + 2*x^2/2! + 20*x^3/3! + 624*x^4/4! + 55248*x^5/5! + ... + A054941(n)*x^n/n! + ...
then L(x) satisfies:
L(x)/x = 1 + 2*L(x) + 2^2*L(x)L(3x)/2! + 2^3*L(x)L(3x)L(9x)/3! + 2^4*L(x)L(3x)L(9x)L(27x)/4! + ...
1/E(x) = 1 - L(x) + L(x)L(3x)/2! - L(x)L(3x)L(9x)/3! + L(x)L(3x)L(9x)L(27x)/4! -+ ...
MATHEMATICA
m = 13; A[_] = 0; Do[A[x_] = x Sum[2^n/n! Product[A[3^k x], {k, 0, n-1}], {n, 0, m}] + O[x]^m // Normal, {m}]; CoefficientList[A[x]/x, x] * Range[1, m-1]! (* Jean-François Alcover, Nov 03 2019 *)
PROG
(PARI) {a(n, q=3)=local(Lq=x+x^2); for(i=1, n, Lq=x*sum(m=0, n, (q-1)^m/m!*prod(k=0, m-1, subst(Lq, x, q^k*x+x*O(x^n))))); n!*polcoeff(Lq, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 20 2010
STATUS
approved