OFFSET
1,2
LINKS
Paul D. Hanna, Table of n, a(n), n = 1..50.
EXAMPLE
G.f.: A(x) = x + 2*x^2 - 12*x^3 + 56*x^4 - 12080*x^5 +...
Coefficients in the (2^n)-th iterations of A(x), n=0..7, begin:
[1, 2, -12, 56, -12080, -9802944, -31002027840, ...];
[1, 4, -16, 0, -23296, -19776000, -62160338944, ...];
[1, 8, 0, -256, -47104, -40198144, -124955000832, ...];
[1, 16, 128, 0, -106496, -83165184, -252519120896, ...];
[1, 32, 768, 14336, 0, -175898624, -516100718592, ...];
[1, 64, 3584, 184320, 8454144, 0, -1064313028608, ...];
[1, 128, 15360, 1777664, 199622656, 21145583616, 0, ...];
[1, 256, 63488, 15482880, 3730571264, 888894652416, 205351244791808, 0, ...];
where the zeros along the diagonal illustrate the property
that the coefficient of x^n in A_{2^(n-1)} is zero for n>2.
PROG
(PARI) {a(n)=local(A=[1, 2], G); for(m=3, n, A=concat(A, 0); G=x*Ser(A); for(i=2, m, G=subst(G, x, G)); A[ #A]=-polcoeff(G, #A)/(2^(#A-1))); A[n]}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 17 2010
STATUS
approved