login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177782
G.f. A(x) satisfies: [x^n] A_{2^(n-1)}(x) = 0 for n>2 where A_{n+1}(x) = A_{n}(A(x)) denotes iteration with A_0(x)=x.
1
1, 2, -12, 56, -12080, -9802944, -31002027840, -344291147482368, -13751106868604649216, -2036529273026085671952640, -1148515664060697951003807202304
OFFSET
1,2
LINKS
EXAMPLE
G.f.: A(x) = x + 2*x^2 - 12*x^3 + 56*x^4 - 12080*x^5 +...
Coefficients in the (2^n)-th iterations of A(x), n=0..7, begin:
[1, 2, -12, 56, -12080, -9802944, -31002027840, ...];
[1, 4, -16, 0, -23296, -19776000, -62160338944, ...];
[1, 8, 0, -256, -47104, -40198144, -124955000832, ...];
[1, 16, 128, 0, -106496, -83165184, -252519120896, ...];
[1, 32, 768, 14336, 0, -175898624, -516100718592, ...];
[1, 64, 3584, 184320, 8454144, 0, -1064313028608, ...];
[1, 128, 15360, 1777664, 199622656, 21145583616, 0, ...];
[1, 256, 63488, 15482880, 3730571264, 888894652416, 205351244791808, 0, ...];
where the zeros along the diagonal illustrate the property
that the coefficient of x^n in A_{2^(n-1)} is zero for n>2.
PROG
(PARI) {a(n)=local(A=[1, 2], G); for(m=3, n, A=concat(A, 0); G=x*Ser(A); for(i=2, m, G=subst(G, x, G)); A[ #A]=-polcoeff(G, #A)/(2^(#A-1))); A[n]}
CROSSREFS
Sequence in context: A180073 A363402 A067125 * A005038 A094780 A268594
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 17 2010
STATUS
approved