login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177783
Wolstenholme quotient of prime p=A000040(n), i.e., such integer m<p that harmonic number H(p-1) == m*p^2 (mod p^3).
3
3, 6, 6, 7, 10, 14, 18, 20, 16, 24, 17, 38, 39, 19, 29, 28, 12, 53, 31, 19, 53, 58, 48, 42, 1, 33, 53, 37, 5, 81, 4, 17, 29, 13, 13, 72, 75, 70, 173, 159, 111, 150, 39, 178, 106, 163, 196, 163, 172, 30, 98, 24, 177, 261, 212, 223, 122, 147, 276, 17, 92, 111, 27, 209, 241
OFFSET
3,1
COMMENTS
a(n) = 0 iff A000040(n) is a Wolstenholme prime (given by A088164).
For n>2 and p=A000040(n), H(p^2-p) == H(p^2-1) == a(n)*p (mod p^2).
LINKS
David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302.
R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
Jianqiang Zhao, Bernoulli numbers, Wolstenholme's theorem, and p^5 variations of Lucas' theorem, Journal of Number Theory, Volume 123, Issue 1, March 2007, Pages 18-26.
FORMULA
a(n) = H(p-1)/p^2 mod p = A001008(p-1)/A002805(p-1)/p^2 mod p = A034602(n)/2 mod p = (binomial(2*p-1,p)-1)/(2*p^3) mod p, where p = A000040(n).
a(n) = (-1/3)*B(p-3) mod p, with p=prime(n) and B(n) is the n-th Bernoulli number. - Michel Marcus, Feb 05 2016
a(n) = A087754(n)/4 mod A000040(n).
PROG
(PARI) { a(n) = my(p); p=prime(n); ((binomial(2*p-1, p)-1)/2/p^3)%p }
KEYWORD
nonn
AUTHOR
Max Alekseyev, May 13 2010
EXTENSIONS
Edited by Max Alekseyev, May 16 2010
STATUS
approved