OFFSET
3,1
COMMENTS
LINKS
David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302.
R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
Jianqiang Zhao, Bernoulli numbers, Wolstenholme's theorem, and p^5 variations of Lucas' theorem, Journal of Number Theory, Volume 123, Issue 1, March 2007, Pages 18-26.
FORMULA
PROG
(PARI) { a(n) = my(p); p=prime(n); ((binomial(2*p-1, p)-1)/2/p^3)%p }
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, May 13 2010
EXTENSIONS
Edited by Max Alekseyev, May 16 2010
STATUS
approved