login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Wolstenholme quotient of prime p=A000040(n), i.e., such integer m<p that harmonic number H(p-1) == m*p^2 (mod p^3).
3

%I #29 Feb 17 2016 09:53:50

%S 3,6,6,7,10,14,18,20,16,24,17,38,39,19,29,28,12,53,31,19,53,58,48,42,

%T 1,33,53,37,5,81,4,17,29,13,13,72,75,70,173,159,111,150,39,178,106,

%U 163,196,163,172,30,98,24,177,261,212,223,122,147,276,17,92,111,27,209,241

%N Wolstenholme quotient of prime p=A000040(n), i.e., such integer m<p that harmonic number H(p-1) == m*p^2 (mod p^3).

%C a(n) = 0 iff A000040(n) is a Wolstenholme prime (given by A088164).

%C For n>2 and p=A000040(n), H(p^2-p) == H(p^2-1) == a(n)*p (mod p^2).

%H David W. Boyd, <a href="http://www.emis.de/journals/EM/expmath/volumes/3/3.html">A p-adic study of the partial sums of the harmonic series</a>, Experimental Math., Vol. 3 (1994), No. 4, 287-302.

%H R. Mestrovic, <a href="http://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011)</a>, arXiv:1111.3057 [math.NT], 2011.

%H R. Mestrovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Mestrovic/mes4.html">On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers</a>, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.

%H Jianqiang Zhao, <a href="http://dx.doi.org/10.1016/j.jnt.2006.05.005">Bernoulli numbers, Wolstenholme's theorem, and p^5 variations of Lucas' theorem</a>, Journal of Number Theory, Volume 123, Issue 1, March 2007, Pages 18-26.

%F a(n) = H(p-1)/p^2 mod p = A001008(p-1)/A002805(p-1)/p^2 mod p = A034602(n)/2 mod p = (binomial(2*p-1,p)-1)/(2*p^3) mod p, where p = A000040(n).

%F a(n) = (-1/3)*B(p-3) mod p, with p=prime(n) and B(n) is the n-th Bernoulli number. - _Michel Marcus_, Feb 05 2016

%F a(n) = A087754(n)/4 mod A000040(n).

%o (PARI) { a(n) = my(p); p=prime(n); ((binomial(2*p-1,p)-1)/2/p^3)%p }

%Y Cf. A034602, A072984, A087754, A092101, A092103, A092193, A128673.

%K nonn

%O 3,1

%A _Max Alekseyev_, May 13 2010

%E Edited by _Max Alekseyev_, May 16 2010