OFFSET
1,1
COMMENTS
For p = prime(n), Boyd defines J_p to be the set of numbers k such that p divides A001008(k), the numerator of the harmonic number H(k). For harmonic primes, J_p contains only the three numbers p-1, (p-1)p and (p-1)(p+1). It has been conjectured that there are an infinite number of these primes and that their density in the primes is 1/e.
Prime p=A000040(n) is in this sequence iff neither H(k) == 0 (mod p), nor H(k) == -A177783(n) (mod p) have solutions for 1 <= k <= p-2. - Max Alekseyev, May 13 2010
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302.
A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.
PROG
(PARI) is(p)=my(K=-Mod((binomial(2*p-1, p)-1)/2/p^3, p), H=Mod(0, p)); for(k=1, p-2, H+=1/k; if(H==0||H==K, return(0))); 1 \\ Charles R Greathouse IV, Mar 16 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Feb 20 2004
EXTENSIONS
More terms from Max Alekseyev, May 13 2010
STATUS
approved