The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105596 a(n) = Sum_{k=0..n} A105595(k)*(-1)^k*A105595(n-k) (interpolated zeros suppressed). 3
 1, 5, 13, 17, 25, 25, 33, 21, 9, -15, -23, -3, -11, -31, -47, -35, 5, -47, -83, -75, -211, -295, -267, -267, -99, -107, -159, -415, -347, -679, -279, -583, -395, -839, -1031, -1291, -1139, -1883, -1519, -1643, -855, -1591, -1571, -1851, -1195, -2419, -1923, -2179, -891, -1919, -2535 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Conjecture : a(2n)=1 mod 4 for all n, a(2n+1)=0 for all n. LINKS Table of n, a(n) for n=0..50. MAPLE A105596 := proc(n) add(A105595(k)*(-1)^k*A105595(2*n-k), k=0..2*n) ; end proc: seq(A105596(n), n=0..50) ; # R. J. Mathar, Nov 28 2014 MATHEMATICA A105594[n_, k_] := A105594[n, k] = Sum[Abs[MoebiusMu[ Binomial[n, j]]*Mod[Binomial[j, k], 2]], {j, 0, n}]//Mod[#, 2]&; A105595[n_] := Sum[A105594[n, k], {k, 0, n}]; a[n_] := Sum[A105595[k]*(-1)^k*A105595[2n - k], {k, 0, 2n}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 01 2023, after R. J. Mathar *) CROSSREFS Cf. A105594, A105595. Sequence in context: A074278 A087895 A092101 * A037046 A126887 A339952 Adjacent sequences: A105593 A105594 A105595 * A105597 A105598 A105599 KEYWORD easy,sign AUTHOR Paul Barry, Apr 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 12:49 EDT 2024. Contains 372736 sequences. (Running on oeis4.)