The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105594 Triangle read by rows: abs(A103447)*A047999 mod 2. 6
1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Row sums are A105595.
LINKS
Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
FORMULA
T(n, k) = mod(Sum_{j=0..n}(abs(mu(binomial(n,j)))*mod(binomial(j,k),2)), 2).
EXAMPLE
Triangle starts
1;
0,1;
1,1,1;
0,0,0,1;
1,0,1,0,1;
0,1,0,1,0,1;
0,0,0,0,1,1,1;
MAPLE
A105594 := proc(n, k)
add( abs(numtheory[mobius](binomial(n, j)))*modp(binomial(j, k), 2) , j=0..n) ;
% mod 2 ;
end proc: # R. J. Mathar, Nov 28 2014
MATHEMATICA
T[n_, k_] := Sum[Abs[MoebiusMu[Binomial[n, j]]*Mod[Binomial[j, k], 2]], {j, 0, n}] // Mod[#, 2]&;
Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 15 2020 *)
CROSSREFS
Sequence in context: A267272 A181656 A090971 * A091949 A039984 A153639
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Apr 14 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 15:04 EDT 2024. Contains 373430 sequences. (Running on oeis4.)