The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105594 Triangle read by rows: abs(A103447)*A047999 mod 2. 6
 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Row sums are A105595. LINKS Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened) FORMULA T(n, k) = mod(Sum_{j=0..n}(abs(mu(binomial(n,j)))*mod(binomial(j,k),2)), 2). EXAMPLE Triangle starts 1; 0,1; 1,1,1; 0,0,0,1; 1,0,1,0,1; 0,1,0,1,0,1; 0,0,0,0,1,1,1; MAPLE A105594 := proc(n, k) add( abs(numtheory[mobius](binomial(n, j)))*modp(binomial(j, k), 2) , j=0..n) ; % mod 2 ; end proc: # R. J. Mathar, Nov 28 2014 MATHEMATICA T[n_, k_] := Sum[Abs[MoebiusMu[Binomial[n, j]]*Mod[Binomial[j, k], 2]], {j, 0, n}] // Mod[#, 2]&; Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 15 2020 *) CROSSREFS Cf. A047999, A103447, A105595, A105596. Sequence in context: A267272 A181656 A090971 * A091949 A039984 A153639 Adjacent sequences: A105591 A105592 A105593 * A105595 A105596 A105597 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Apr 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 15:04 EDT 2024. Contains 373430 sequences. (Running on oeis4.)