The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090971 Sierpiński's triangle, read by rows, starting from 1: T(n,k) = (T(n-1,k) + T(n-1,k-1)) mod 2. 2
 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row sums give A038573. LINKS G. C. Greubel, Rows n = 1..100 of triangle, flattened FORMULA From Philippe Deléham, Feb 29 2004: (Start) Triangle A047999(n, k) for n > 0 and k > 0; A047999: Pascal's triangle mod 2. a(n) = A062534(n-1) mod 2. T(n-1, k-1) = A074909(n, n-k) mod 2. EXAMPLE Triangle begins with:   1;   0, 1;   1, 1, 1;   0, 0, 0, 1;   1, 0, 0, 1, 1;   0, 1, 0, 1, 0, 1;   1, 1, 1, 1, 1, 1, 1; ... MATHEMATICA T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, Mod[T[n-1, k] + T[n-1, k-1], 2]]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Feb 03 2019 *) PROG (PARI) T(n, k)=if(k<0 || k>n, 0, if(n==0, 1, (T(n-1, k)+T(n-1, k-1))%2)) CROSSREFS Cf. A007318. Sequence in context: A267814 A267272 A181656 * A105594 A091949 A039984 Adjacent sequences:  A090968 A090969 A090970 * A090972 A090973 A090974 KEYWORD nonn,tabl AUTHOR Benoit Cloitre, Feb 28 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 22:19 EDT 2021. Contains 343197 sequences. (Running on oeis4.)