OFFSET
2,2
COMMENTS
Empirical: In the ring of symmetric functions over the fraction field Q(q, t), letting s(n) denote the Schur function indexed by n, a(n)*(-1)^(n+1) is equal to the coefficient of s(n) in nabla^(n)s(n) with q=t=1, where nabla denotes the "nabla operator" on symmetric functions. - John M. Campbell, Nov 18 2017
LINKS
G. C. Greubel, Table of n, a(n) for n = 2..335
EXAMPLE
For n = 3, binomial(9,3)/(3*4) =84/12 = 7.
For example, the coefficient of s(3) in nabla(nabla(nabla(s(3)))) is equal to q^6*t^2+q^5*t^3+q^4*t^4+q^3*t^5+q^2*t^6+q^4*t^3+q^3*t^4, and if we let q and t be equal to 1, this coefficient reduces to 7 = a(3). - John M. Campbell, Nov 18 2017
MAPLE
A177784 := proc(n)
binomial(n^2, n)/(n^2+n) ;
end proc:
seq(A177784(n), n=2..20) ; # R. J. Mathar, Nov 07 2011
MATHEMATICA
Table[Binomial[n^2, n]/(2*Binomial[n+1, 2]), {n, 2, 30}] (* G. C. Greubel, Jul 18 2024 *)
PROG
(Magma) [Binomial(n^2, n)/(2*Binomial(n+1, 2)): n in [2..30]]; // G. C. Greubel, Jul 18 2024
(SageMath) [binomial(n^2, n)//(n*(n+1)) for n in range(2, 31)] # G. C. Greubel, Jul 18 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, May 13 2010
STATUS
approved