login
A361142
E.g.f. satisfies A(x) = exp( x*A(x)^2/(1 - x*A(x)) ).
6
1, 1, 7, 91, 1773, 46401, 1529593, 60911103, 2845757449, 152663425633, 9250206248781, 624880915165959, 46569571425664477, 3795729136868379777, 335902071304953561073, 32074779600414913885231, 3287242849289861637185937, 359917016243351870997841473
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(n-1,n-k)/k!.
a(n) ~ s^2 * sqrt((2 - r*s)/(2 + r*s*(-2 + s*(2 - r*s)^2))) * n^(n-1) / (exp(n) * r^(n - 1/2)), where r = 0.14220768719194290600038416000340972911571484385125... and s = 1.549730657609106944767484487465870359529391502493... are roots of the system of equations exp(r*s^2/(1 - r*s)) = s, r*s^2*(2 - r*s) = (1 - r*s)^2. - Vaclav Kotesovec, Mar 03 2023
MATHEMATICA
Table[n! * Sum[(n+k+1)^(k-1) * Binomial[n-1, n-k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2023 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(n-1, n-k)/k!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 02 2023
STATUS
approved