The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326266 E.g.f.: Sum_{n>=0} (W(x)^n - 1)^n / n!, where W(x) = exp(x*W(x)) = LambertW(-x)/(-x). 2
 1, 1, 7, 91, 1783, 47946, 1672792, 72866697, 3852230053, 241824521557, 17714982044177, 1493077817195504, 143094233569327124, 15440409366381056045, 1860025278971873645275, 248329234183480721887287, 36510264273068226851851499, 5878143072506946449089361730, 1031187834682741732109817310932, 196233233091044380685807479720997, 40346356057197038193312451911514301 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, the following sums are equal: (1) Sum_{n>=0} (p + q^n)^n * r^n/n!, (2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!; here, q = LambertW(-x)/(-x) with p = -1, r = 1. LINKS FORMULA Let W(x) = LambertW(-x)/(-x), then e.g.f. A(x) equals the following sums. (1) Sum_{n>=0} (W(x)^n - 1)^n / n!. (2) Sum_{n>=0} W(x)^(n^2) * exp( -W(x)^n ) / n!. EXAMPLE E.g.f.: A(x) = 1 + x + 7*x^2/2! + 91*x^3/3! + 1783*x^4/4! + 47946*x^5/5! + 1672792*x^6/6! + 72866697*x^7/7! + 3852230053*x^8/8! + 241824521557*x^9/9! + 17714982044177*x^10/10! + ... such that A(x) = 1 + (W(x) - 1) + (W(x)^2 - 1)^2/2! + (W(x)^3 - 1)^3/3! + (W(x)^4 - 1)^4/4! + (W(x)^5 - 1)^5/5! + (W(x)^6 - 1)^6/6! + (W(x)^7 - 1)^7/7! + ... also A(x) = exp(-1) + W(x)*exp(-W(x)) + W(x)^4*exp(-W(x)^2)/2! + W(x)^9*exp(-W(x)^3)/3! + W(x)^16*exp(-W(x)^4)/4! + W(x)^25*exp(-W(x)^5)/5! + W(x)^36*exp(-W(x)^6)/6! + ... where W(x) = exp(x*W(x)) = LambertW(-x)/(-x) begins W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! + ... + (n+1)^(n-1)*x^n/n! + ... RELATED SERIES. Note that W(x)^n equals W(x)^n = Sum_{k>=0} n * (n + k)^(k-1) * x^k/k! and so W(x)^(n^2) = Sum_{k>=0} n^2 * (n^2 + k)^(k-1) * x^k/k!. PROG (PARI) /* E.g.f.: Sum_{n>=0} (W(x)^n - 1)^n / n! */ {a(n) = my(W = 1/x*serreverse(x*exp(-x +x*O(x^n)))); n! * polcoeff( sum(m=0, n, (W^m - 1)^m / m!), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A326267, A326268. Sequence in context: A008542 A121940 A177784 * A124557 A195213 A317370 Adjacent sequences:  A326263 A326264 A326265 * A326267 A326268 A326269 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 01:25 EST 2021. Contains 349558 sequences. (Running on oeis4.)