login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326266 E.g.f.: Sum_{n>=0} (W(x)^n - 1)^n / n!, where W(x) = exp(x*W(x)) = LambertW(-x)/(-x). 2
1, 1, 7, 91, 1783, 47946, 1672792, 72866697, 3852230053, 241824521557, 17714982044177, 1493077817195504, 143094233569327124, 15440409366381056045, 1860025278971873645275, 248329234183480721887287, 36510264273068226851851499, 5878143072506946449089361730, 1031187834682741732109817310932, 196233233091044380685807479720997, 40346356057197038193312451911514301 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

More generally, the following sums are equal:

(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,

(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;

here, q = LambertW(-x)/(-x) with p = -1, r = 1.

LINKS

Table of n, a(n) for n=0..20.

FORMULA

Let W(x) = LambertW(-x)/(-x), then e.g.f. A(x) equals the following sums.

(1) Sum_{n>=0} (W(x)^n - 1)^n / n!.

(2) Sum_{n>=0} W(x)^(n^2) * exp( -W(x)^n ) / n!.

EXAMPLE

E.g.f.: A(x) = 1 + x + 7*x^2/2! + 91*x^3/3! + 1783*x^4/4! + 47946*x^5/5! + 1672792*x^6/6! + 72866697*x^7/7! + 3852230053*x^8/8! + 241824521557*x^9/9! + 17714982044177*x^10/10! + ...

such that

A(x) = 1 + (W(x) - 1) + (W(x)^2 - 1)^2/2! + (W(x)^3 - 1)^3/3! + (W(x)^4 - 1)^4/4! + (W(x)^5 - 1)^5/5! + (W(x)^6 - 1)^6/6! + (W(x)^7 - 1)^7/7! + ...

also

A(x) = exp(-1) + W(x)*exp(-W(x)) + W(x)^4*exp(-W(x)^2)/2! + W(x)^9*exp(-W(x)^3)/3! + W(x)^16*exp(-W(x)^4)/4! + W(x)^25*exp(-W(x)^5)/5! + W(x)^36*exp(-W(x)^6)/6! + ...

where W(x) = exp(x*W(x)) = LambertW(-x)/(-x) begins

W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! + ... + (n+1)^(n-1)*x^n/n! + ...

RELATED SERIES.

Note that W(x)^n equals

W(x)^n = Sum_{k>=0} n * (n + k)^(k-1) * x^k/k!

and so

W(x)^(n^2) = Sum_{k>=0} n^2 * (n^2 + k)^(k-1) * x^k/k!.

PROG

(PARI) /* E.g.f.: Sum_{n>=0} (W(x)^n - 1)^n / n! */

{a(n) = my(W = 1/x*serreverse(x*exp(-x +x*O(x^n))));

n! * polcoeff( sum(m=0, n, (W^m - 1)^m / m!), n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A326267, A326268.

Sequence in context: A008542 A121940 A177784 * A124557 A195213 A317370

Adjacent sequences:  A326263 A326264 A326265 * A326267 A326268 A326269

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 01:25 EST 2021. Contains 349558 sequences. (Running on oeis4.)