|
|
A326265
|
|
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^(5*n) - A(x) )^n.
|
|
5
|
|
|
1, 5, 40, 1185, 65270, 4861126, 445776670, 48124064710, 5952881626790, 828544320379330, 128058593506875627, 21758230559633783765, 4031357498037096661170, 809070343591564791211705, 174888309616496370413590235, 40517215307075701804767255261, 10017278630199891781122121185615, 2632883558256463087445119555912870, 733167697272377998186394054589647855, 215641985221691590110546294934099963285
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( 1/(1-x)^(5*n) - A(x) )^n.
(2) 1 = Sum_{n>=0} ( 1 - (1-x)^(5*n)*A(x) )^n / (1-x)^(5*n^2).
(3) 1 = Sum_{n>=0} (1-x)^(5*n) / ( (1-x)^(5*n) + A(x) )^(n+1).
|
|
EXAMPLE
|
G.f.: A(x) = 1 + 5*x + 40*x^2 + 1185*x^3 + 65270*x^4 + 4861126*x^5 + 445776670*x^6 + 48124064710*x^7 + 5952881626790*x^8 + 828544320379330*x^9 + 128058593506875627*x^10 + ...
such that
1 = 1 + (1/(1-x)^5 - A(x)) + (1/(1-x)^10 - A(x))^2 + (1/(1-x)^15 - A(x))^3 + (1/(1-x)^20 - A(x))^4 + (1/(1-x)^25 - A(x))^5 + (1/(1-x)^30 - A(x))^6 + (1/(1-x)^35 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1-x)^5/((1-x)^5 + A(x))^2 + (1-x)^10/((1-x)^10 + A(x))^3 + (1-x)^15/((1-x)^15 + A(x))^4 + (1-x)^20/((1-x)^20 + A(x))^5 + (1-x)^25/((1-x)^25 + A(x))^6 + (1-x)^30/((1-x)^30 + A(x))^7 + ...
|
|
PROG
|
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1-x)^(-5*m) - Ser(A))^m ) )[#A] ); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|