login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326268
E.g.f.: Sum_{n>=0} (1 + W(x)^n)^n * x^n / n!, where W(x) = exp(x*W(x)) = LambertW(-x)/(-x).
2
1, 2, 6, 41, 464, 7137, 138520, 3262429, 90838256, 2933881793, 108328840784, 4520094828933, 211121218481464, 10950494124192625, 626447138747705384, 39291583224925510373, 2687826475163234708960, 199600950459114370987905, 16023820242226719843186976, 1385388282982694845147725925, 128555684722289147339542911656, 12763504615760744636458361018417, 1351971567374693190451022777333816
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = LambertW(-x)/(-x) with p = 1, r = x.
FORMULA
Let W(x) = LambertW(-x)/(-x), then e.g.f. A(x) equals the following sums.
(1) Sum_{n>=0} (1 + W(x)^n)^n * x^n / n!.
(2) Sum_{n>=0} W(x)^(n^2) * exp( W(x)^n * x ) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 41*x^3/3! + 464*x^4/4! + 7137*x^5/5! + 138520*x^6/6! + 3262429*x^7/7! + 90838256*x^8/8! + 2933881793*x^9/9! + 108328840784*x^10/10! + ...
such that
A(x) = 1 + (1 + W(x))*x + (1 + W(x)^2)^2*x^2/2! + (1 + W(x)^3)^3*x^3/3! + (1 + W(x)^4)^4*x^4/4! + (1 + W(x)^5)^5*x^5/5! + (1 + W(x)^6)^6*x^6/6! + (1 + W(x)^7)^7*x^7/7! + (1 + W(x)^8)^8*x^8/8! + ...
also
A(x) = exp(x) + W(x)*exp(W(x)*x)*x + W(x)^4*exp(W(x)^2*x)*x^2/2! + W(x)^9*exp(W(x)^3*x)*x^3/3! + W(x)^16*exp(W(x)^4*x)*x^4/4! + W(x)^25*exp(W(x)^5*x)*x^5/5! + W(x)^36*exp(W(x)^6*x)*x^6/6! + ...
where W(x) = exp(x*W(x)) = LambertW(-x)/(-x) begins
W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! + ... + (n+1)^(n-1)*x^n/n! + ...
RELATED SERIES.
Note that W(x)^n equals
W(x)^n = Sum_{k>=0} n * (n + k)^(k-1) * x^k/k!
and so
W(x)^(n^2) = Sum_{k>=0} n^2 * (n^2 + k)^(k-1) * x^k/k!.
PROG
(PARI) /* E.g.f.: Sum_{n>=0} (1 + W(x)^n)^n * x^n / n! */
{a(n) = my(W = 1/x*serreverse(x*exp(-x +x*O(x^n))));
n! * polcoeff( sum(m=0, n, (1 + W^m)^m * x^m / m!), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* E.g.f.: Sum_{n>=0} W(x)^(n^2) * exp( -W(x)^n * x ) / n! */
{a(n) = my(W = 1/x*serreverse(x*exp(-x +x*O(x^n))));
n! * polcoeff( sum(m=0, n, W^(m^2) * exp(W^m*x +x*O(x^n)) * x^m / m!), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A367365 A367603 A336281 * A096138 A004153 A071440
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2019
STATUS
approved