login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177777
E.g.f. satisfies: L(x) = x*Sum_{n>=0} (1/n!)*Product_{k=0..n-1} L(2^k*x).
4
1, 2, 12, 152, 3640, 160224, 13063792, 2012388736, 596666619648, 344964885948160, 392058233038486784, 880255154481199466496, 3916538634445633156373504, 34603083354426212294072477696
OFFSET
1,2
COMMENTS
An analog of the LambertW function.
A053549 without the leading term. - R. J. Mathar, May 24 2010
LINKS
FORMULA
a(n) = n*A001187(n), where A001187(n) is the number of connected labeled graphs with n nodes.
Let B(x) = Sum_{n>=0} 2^(n(n-1)/2)*x^n/n! then
. L(x) = x*d/dx log(B(x)) = x*B'(x)/B(x) and
. 1/B(x) = Sum_{n>=0} (-1)^n/n!*Product_{k=0..n-1} L(2^k*x).
EXAMPLE
E.g.f.: L(x) = x + 2*x^2/2! + 12*x^3/3! + 152*x^4/4! + 3640*x^5/5! +...
which is invariant under the series:
L(x)/x = 1 + L(x) + L(x)L(2x)/2! + L(x)L(2x)L(4x)/3! + L(x)L(2x)L(4x)L(8x)/4! +...
Let B(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 64*x^4/4! + 1024*x^5/5! +...
so that log(B(x)) = x + x^2/2! + 4*x^3/3! + 38*x^4/4! + 728*x^5/5! +...+ A001187(n)*x^n/n! +...
then L(x) = x*d/dx log(B(x)) which also satisfies:
1/B(x) = 1 - L(x) + L(x)L(2x)/2! - L(x)L(2x)L(4x)/3! + L(x)L(2x)L(4x)L(8x)/4! -+...
PROG
(PARI) {a(n, r=1)=local(A=x+x^2); for(i=1, n, A=x*sum(m=0, n, r^m/m!*prod(k=0, m-1, subst(A, x, 2^k*x+x*O(x^n))))); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A208582 A000795 A085628 * A053549 A139383 A216351
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 19 2010
STATUS
approved