OFFSET
1,2
COMMENTS
An analog of the LambertW function.
A053549 without the leading term. - R. J. Mathar, May 24 2010
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..70
FORMULA
EXAMPLE
E.g.f.: L(x) = x + 2*x^2/2! + 12*x^3/3! + 152*x^4/4! + 3640*x^5/5! +...
which is invariant under the series:
L(x)/x = 1 + L(x) + L(x)L(2x)/2! + L(x)L(2x)L(4x)/3! + L(x)L(2x)L(4x)L(8x)/4! +...
Let B(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 64*x^4/4! + 1024*x^5/5! +...
so that log(B(x)) = x + x^2/2! + 4*x^3/3! + 38*x^4/4! + 728*x^5/5! +...+ A001187(n)*x^n/n! +...
then L(x) = x*d/dx log(B(x)) which also satisfies:
1/B(x) = 1 - L(x) + L(x)L(2x)/2! - L(x)L(2x)L(4x)/3! + L(x)L(2x)L(4x)L(8x)/4! -+...
PROG
(PARI) {a(n, r=1)=local(A=x+x^2); for(i=1, n, A=x*sum(m=0, n, r^m/m!*prod(k=0, m-1, subst(A, x, 2^k*x+x*O(x^n))))); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 19 2010
STATUS
approved