login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177775
G.f. A(x) satisfies: [x^n] A_{n}(x) = [x^n] A_{n-1}(x) for n>2 where A_{n+1}(x) = A_{n}(A(x)) denotes iteration with A_0(x)=x.
2
1, 1, -4, 39, -580, 11480, -285116, 8617217, -311138320, 13245849264, -657721045720, 37721447340698, -2476051190767536, 184449202720026868, -15472664808232769104, 1451318259607442040637, -151254398423642331357224
OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 - 4*x^3 + 39*x^4 - 580*x^5 + 11480*x^6 +...
Coefficients in the initial iterations of A(x) begin:
[1, 1, -4,. 39,.. -580,. 11480,. -285116,.. 8617217,. -311138320,...];
[1, 2,(-6), 59,.. -898,. 18228,. -463816,. 14330618,. -527519702,...];
[1, 3,(-6),(66), -1048,. 21932,. -572180,. 18055088,. -676555682,...];
[1, 4, -4, (66),(-1100), 23750,. -634548,. 20415192,. -777438522,...];
[1, 5,. 0,. 65, (-1100),(24430), -666940,. 21835125,. -843666770,...];
[1, 6,. 6,. 69,. -1070, (24430),(-679756), 22603642,. -884811200,...];
[1, 7, 14,. 84,. -1008,. 24038, (-679756),(22919008), -907726332,...];
[1, 8, 24, 116,.. -888,. 23492,. -671320, (22919008),(-917372412),...];
[1, 9, 36, 171,.. -660,. 23100,. -656988,. 22701057, (-917372412),...]; ...
where the above coefficients in parenthesis illustrate the property
that the coefficients of x^n in A_{n}(x) and in A_{n-1}(x) are equal.
PROG
(PARI) {a(n)=local(F=x+x^2+sum(m=3, n-1, a(m)*x^m)+x*O(x^n), G=x, H); for(i=1, n-1, G=subst(G, x, F)); H=subst(G, x, F); if(n<1, 0, if(n<3, 1, polcoeff(G-H, n)))}
CROSSREFS
Sequence in context: A319177 A323323 A300188 * A364981 A192935 A365010
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 13 2010
STATUS
approved