login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177778
E.g.f.: A(x) = Sum_{n>=0} 2^n/n!*Product_{k=0..n-1} L(2^k*x), where L(x) is the e.g.f. of A177777.
0
1, 2, 12, 160, 4272, 221648, 22347648, 4416360160, 1724182065408, 1336677590208512, 2064038664552586752, 6359502604300426739200, 39136760890428640414851072, 481344480930558145524346370048
OFFSET
0,2
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 160*x^3/3! + 4272*x^4/4! +...
Then e.g.f. A(x) is given by:
A(x) = 1 + 2*L(x) + 2^2*L(x)L(2x)/2! + 2^3*L(x)L(2x)L(4x)/3! + 2^4*L(x)L(2x)L(4x)L(8x)/4! +...
where L(x) is the e.g.f. of A177777:
. L(x) = x + 2*x^2/2! + 12*x^3/3! + 152*x^4/4! + 3640*x^5/5! +...
. L(x) = x*d/dx log( Sum_{n>=0} 2^(n(n-1)/2)*x^n/n! )
and satisfies:
. L(x)/x = 1 + L(x) + L(x)L(2x)/2! + L(x)L(2x)L(4x)/3! + L(x)L(2x)L(4x)L(8x)/4! +...
PROG
(PARI) {a(n, q=2)=local(Lq=x+x^2, A); for(i=1, n, Lq=x*sum(m=0, n, (q-1)^m/m!*prod(k=0, m-1, subst(Lq, x, q^k*x+x*O(x^n))))); A=sum(m=0, n, 2^m/m!*prod(k=0, m-1, subst(Lq, x, q^k*x+x*O(x^n)))); n!*polcoeff(A, n)}
CROSSREFS
Sequence in context: A326222 A208577 A012646 * A180420 A012328 A302688
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 20 2010
STATUS
approved