login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180420
G.f. satisfies: A(A(x)) = x + A(2*x)^2.
0
1, 2, 12, 160, 4592, 276496, 34174592, 8570174016, 4335215019520, 4408454839564672, 8992935435667848448, 36753720073439398166016, 300717909357395506394597376, 4923649248081508021291300507648
OFFSET
1,2
FORMULA
a(n)=T(n,1), T(n,m)=1/2*(kron_delta(n,m)+ sum(j=max(0,2*m-n)..m-1, binomial(m,j)*2^(n-j)*T(n-j,2*(m-j)))-sum(k=m+1..n-1, T(n,k)*T(k,m)))), n>m, T(n,n)=1. [Vladimir Kruchinin, May 03 2012]
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 12*x^3 + 160*x^4 + 4592*x^5 + 276496*x^6 +...
A(A(x)) = x + 4*x^2 + 32*x^3 + 448*x^4 + 11776*x^5 + 637952*x^6 +...
A(x)^2 = x^2 + 4*x^3 + 28*x^4 + 368*x^5 + 9968*x^6 + 575200*x^7 +...
PROG
(PARI) {a(n)=local(A=x+sum(k=2, n-1, a(k)*x^k)+x*O(x^n)); if(n==1, 1, polcoeff(x+subst(A, x, 2*x)^2-subst(A, x, A), n)/2)}
(Maxima) T(n, m):=( if n=m then 1 else 1/2*(kron_delta(n, m)+ sum(binomial(m, j)*2^(n-j)*T(n-j, 2*(m-j)), j, max(0, 2*m-n), m-1)-sum(T(n, k)*T(k, m), k, m+1, n-1))); makelist(T(n, 1), n, 1, 7); /* Vladimir Kruchinin, May 03 2012 */
CROSSREFS
Sequence in context: A208577 A012646 A177778 * A012328 A302688 A201007
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 03 2010
STATUS
approved