The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181442 Solutions a(n) to (r(n)-2)*(r(n)-3) = 6*a(n)*(a(n)-1). 5
 1, 2, 4, 15, 35, 144, 342, 1421, 3381, 14062, 33464, 139195, 331255, 1377884, 3279082, 13639641, 32459561, 135018522, 321316524, 1336545575, 3180705675, 13230437224, 31485740222, 130967826661, 311676696541, 1296447829382, 3085281225184, 12833510467155 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A combinatorial interpretation is provided in A180483, which also lists the r(n). LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,10,-10,-1,1). FORMULA G.f. ( -1-x+8*x^2-x^3-x^4 ) / ( (x-1)*(x^4-10*x^2+1) ). - R. J. Mathar, Feb 05 2011 Explicit formulas: r=sqrt(6), s=5+2*r, t=5-2*r. a(2*n)=(12+(6+r)*s^n+(6-r)*t^n)/24. a(2*n+1)=(12+(18+7*r)*s^n+(18-7*r)*t^n)/24. a(n)=11*a(n-2)-11*a(n-4)+a(n-6). a(n) = +a(n-1) +10*a(n-2) -10*a(n-3) -a(n-4) +a(n-5). EXAMPLE For n=3: a(3)=15; b(3)=38; binomial(38,4)=73815 binomial(38,2)*binomial(15,2)=73815 MAPLE n:=0: for s from 1 to 100 do r:=(sqrt(24*s^2-24*s+1)+5)/2: if (floor(r)=r) then a[n]:=s: b[n]:=r: n:=n+1: end if: end do: MATHEMATICA LinearRecurrence[{1, 10, -10, -1, 1}, {1, 2, 4, 15, 35}, 30] (* Harvey P. Dale, Dec 22 2012 *) CROSSREFS Cf. A180483. Sequence in context: A080623 A196260 A073814 * A007122 A005219 A153945 Adjacent sequences:  A181439 A181440 A181441 * A181443 A181444 A181445 KEYWORD nonn AUTHOR Paul Weisenhorn, Jan 29 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 19:58 EDT 2021. Contains 344002 sequences. (Running on oeis4.)