login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041003
The sequence e, given that c is a left shift by one place of b.
4
1, 1, 1, 2, 3, 3, 4, 6, 7, 8, 10, 12, 14, 16, 20, 23, 26, 30, 36, 41, 47, 55, 64, 73, 83, 96, 111, 125, 144, 165, 187, 211, 241, 272, 306, 346, 391, 439, 493, 553, 622, 695, 779, 871, 974, 1086, 1211, 1348, 1502, 1671, 1857, 2061, 2288, 2533, 2808, 3107, 3439, 3800, 4199, 4634, 5113
OFFSET
0,4
COMMENTS
Map a binary sequence b=[ b_1,... ] to a binary sequence c=[ c_1,... ] so that C=1/Product (1-x^i)^c_i == 1+Sum b_i*x^i mod 2.
This produces 2 new sequences: d={i:c_i=1} and e=[ 1,e_1,... ] where C=1+Sum e_i*x^i.
LINKS
FORMULA
From Andrew Howroyd, Apr 15 2021: (Start)
Euler transform of A041004.
G.f.: A(x) = 1/Product_{k>=1} (1 - x^k)^(a(k+1) mod 2). (End)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=vector(n+1)); v[1]=1; for(n=2, #v, v[n]=(v[n-1]+EulerT(v[2..n])[n-1])%2); concat([1], EulerT(v[2..n+1]))} \\ Andrew Howroyd, Apr 14 2021
CROSSREFS
Sequence in context: A265109 A301277 A029033 * A067592 A101195 A036018
KEYWORD
nonn,easy,eigen
EXTENSIONS
Terms a(50) and beyond from Andrew Howroyd, Apr 14 2021
STATUS
approved