login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029033
Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^7)).
0
1, 1, 1, 2, 3, 3, 4, 6, 7, 8, 10, 12, 14, 16, 19, 22, 25, 28, 32, 36, 40, 45, 50, 55, 61, 67, 73, 80, 88, 95, 103, 112, 121, 130, 140, 151, 162, 173, 185, 198, 211, 224, 239, 254, 269, 285, 302, 319, 337, 356, 375, 395
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 4 and 7. - Ilya Gutkovskiy, May 14 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 1, 0, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=3, a(6)=4, a(7)=6, a(8)=7, a(9)=8, a(10)=10, a(11)=12, a(12)=14, a(13)=16, a(14)=19, a(n) = a(n-1) + a(n-3) - a(n-5) - a(n-10) + a(n-12) + a(n-14) - a(n-15). - Harvey P. Dale, Feb 26 2012
MAPLE
M := Matrix(15, (i, j)-> if (i=j-1) or (j=1 and member(i, [1, 3, 12, 14])) then 1 elif j=1 and member(i, [5, 10, 15]) then -1 else 0 fi); a := n -> (M^(n))[1, 1]; seq (a(n), n=0..51); # Alois P. Heinz, Jul 25 2008
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^7)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 1, 0, 1, -1}, {1, 1, 1, 2, 3, 3, 4, 6, 7, 8, 10, 12, 14, 16, 19}, 60] (* Harvey P. Dale, Feb 26 2012 *)
CROSSREFS
Sequence in context: A256211 A265109 A301277 * A041003 A067592 A101195
KEYWORD
nonn
STATUS
approved