The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029032 Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^5)). 1
 1, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17, 20, 23, 27, 31, 35, 40, 45, 51, 57, 63, 70, 78, 86, 94, 103, 113, 123, 134, 145, 157, 170, 183, 197, 212, 227, 243, 260, 278, 296, 315, 335, 356, 378, 400, 423, 448, 473 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of partitions of n into parts 1,3,4 and 5. - David Neil McGrath, Sep 13 2014 LINKS Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1). FORMULA a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=4, a(6)=5, a(7)=6, a(8)=8, a(9)=10, a(10)=12, a(11)=14, a(12)=17, a(n)=a(n-1)+a(n-3)-a(n-6)- a(n-7)+ a(n-10)+a(n-12)-a (n-13). - Harvey P. Dale, Jan 04 2012 a(n)-a(n-1) = A008680(n). - R. J. Mathar, Jun 23 2021 a(n)-a(n-3) = A025772(n). - R. J. Mathar, Jun 23 2021 a(n)-a(n-4) = A008672(n). - R. J. Mathar, Jun 23 2021 a(n)-a(n-5) = A025767(n). - R. J. Mathar, Jun 23 2021 MAPLE M := Matrix(13, (i, j)-> if (i=j-1) or (j=1 and member(i, [1, 3, 10, 12])) then 1 elif j=1 and member(i, [6, 7, 13]) then -1 else 0 fi); a := n -> (M^(n))[1, 1]; seq (a(n), n=0..49); # Alois P. Heinz, Jul 25 2008 MATHEMATICA CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^5)), {x, 0, 50}], x] (* or *) LinearRecurrence[{1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1}, {1, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 17}, 50] (* Harvey P. Dale, Jan 04 2012 *) CROSSREFS Sequence in context: A237118 A112402 A056864 * A218906 A059809 A327634 Adjacent sequences:  A029029 A029030 A029031 * A029033 A029034 A029035 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 08:31 EST 2021. Contains 349437 sequences. (Running on oeis4.)