login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029034
Expansion of 1/((1-x)(1-x^3)(1-x^4)(1-x^8)).
0
1, 1, 1, 2, 3, 3, 4, 5, 7, 8, 9, 11, 14, 15, 17, 20, 24, 26, 29, 33, 38, 41, 45, 50, 57, 61, 66, 73, 81, 86, 93, 101, 111, 118, 126, 136, 148, 156, 166, 178, 192, 202, 214, 228, 244, 256, 270, 286, 305, 319, 335, 354
OFFSET
0,4
COMMENTS
Number of partitions of n into parts 1, 3, 4 and 8. - Ilya Gutkovskiy, May 14 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 0, -1, 0, -1, 2, -1, 0, -1, 0, 1, 0, 1, -1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=2, a(4)=3, a(5)=3, a(6)=4, a(7)=5, a(8)=7, a(9)=8, a(10)=9, a(11)=11, a(12)=14, a(13)=15, a(14)=17, a(15)=20, a(n)=a(n-1)+a(n-3)-a(n-5)-a(n-7)+2*a(n-8)-a(n-9)-a(n-11)+ a(n-13)+ a(n-15)-a(n-16). - Harvey P. Dale, Jul 21 2013
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^3)(1-x^4)(1-x^8)), {x, 0, 60}], x] (* or *) LinearRecurrence[{1, 0, 1, 0, -1, 0, -1, 2, -1, 0, -1, 0, 1, 0, 1, -1}, {1, 1, 1, 2, 3, 3, 4, 5, 7, 8, 9, 11, 14, 15, 17, 20}, 60] (* Harvey P. Dale, Jul 21 2013 *)
CROSSREFS
Sequence in context: A125616 A367220 A141472 * A343941 A280127 A237977
KEYWORD
nonn
AUTHOR
STATUS
approved