login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237977
Number of strict partitions of n such that (least part) <= number of parts.
4
0, 1, 0, 1, 1, 2, 3, 3, 4, 5, 7, 8, 11, 13, 17, 20, 25, 29, 36, 42, 51, 60, 72, 84, 100, 117, 137, 160, 187, 216, 251, 290, 334, 385, 442, 507, 581, 664, 757, 864, 982, 1116, 1266, 1435, 1622, 1835, 2069, 2333, 2626, 2954, 3316, 3724, 4172, 4673, 5227, 5844
OFFSET
0,6
LINKS
FORMULA
G.f.: Sum_{k>=0} x^(k*(k+1)/2) * (1-x^(k^2)) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022
a(n) = A000009(n) - A237979(n). - Vaclav Kotesovec, Jan 18 2022
EXAMPLE
a(8) = 4 counts these partitions: 71, 53, 521, 431.
MATHEMATICA
z = 50; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]
Table[Count[q[n], p_ /; Min[p] < t[p]], {n, z}] (* A237976 *)
Table[Count[q[n], p_ /; Min[p] <= t[p]], {n, z}] (* A237977 *)
Table[Count[q[n], p_ /; Min[p] == t[p]], {n, z}] (* A096401 *)
Table[Count[q[n], p_ /; Min[p] > t[p]], {n, z}] (* A237979 *)
Table[Count[q[n], p_ /; Min[p] >= t[p]], {n, z}] (* A025157 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^(k*(k+1)/2)*(1-x^k^2)/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 18 2014
EXTENSIONS
Prepended a(0)=0, Seiichi Manyama, Jan 13 2022
STATUS
approved