OFFSET
0,6
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: Sum_{k>=0} x^(k*(k+1)/2) * (1-x^(k^2)) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022
EXAMPLE
a(8) = 4 counts these partitions: 71, 53, 521, 431.
MATHEMATICA
z = 50; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]
Table[Count[q[n], p_ /; Min[p] < t[p]], {n, z}] (* A237976 *)
Table[Count[q[n], p_ /; Min[p] <= t[p]], {n, z}] (* A237977 *)
Table[Count[q[n], p_ /; Min[p] == t[p]], {n, z}] (* A096401 *)
Table[Count[q[n], p_ /; Min[p] > t[p]], {n, z}] (* A237979 *)
Table[Count[q[n], p_ /; Min[p] >= t[p]], {n, z}] (* A025157 *)
PROG
(PARI) my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=0, N, x^(k*(k+1)/2)*(1-x^k^2)/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 18 2014
EXTENSIONS
Prepended a(0)=0, Seiichi Manyama, Jan 13 2022
STATUS
approved