login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164657
Denominators of partial sums of Theta(5) = Sum_{j>=1} 1/(2*j-1)^5.
2
1, 243, 759375, 12762815625, 3101364196875, 499477805270915625, 185452612752454075153125, 185452612752454075153125, 263316190384861185784690603125, 651996955695764397260286617707209375, 651996955695764397260286617707209375, 4196476041813743307955464949873473110315625
OFFSET
1,2
COMMENTS
The numerators are given by A164656.
For a reference and a W. Lang link see A164656.
Rationals (partial sums) Theta(5,n) := Sum_{j=1..n} 1/(2*j-1)^5 (in lowest terms). The limit of these rationals is Theta(5)= (1-1/2^5)*Zeta(5) approximately 1.004523763 (Zeta(n) is the Euler-Riemann zeta function).
FORMULA
a(n) = denominator(Theta(5,n)) = denominator(Sum_{j=1..n} 1/(2*j-1)^5).
EXAMPLE
Rationals Theta(5,n): [1, 244/243, 762743/759375, 12820180976/12762815625, 3115356499043/3101364196875,...].
MATHEMATICA
r[n_] := Sum[1/(2*j-1)^5, {j, 1, n}]; (* or r[n_] := (PolyGamma[4, n+1/2] - PolyGamma[4, 1/2])/768 // FullSimplify; *) Table[r[n] // Denominator, {n, 1, 12}] (* Jean-François Alcover, Dec 02 2013 *)
CROSSREFS
Sequence in context: A017309 A017429 A017561 * A151638 A352033 A248137
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Oct 16 2009
STATUS
approved