login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164659
Denominators of coefficients of integrated Chebyshev polynomials T(n,x) (in increasing order of powers of x).
6
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 5, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 7, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 9, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 11, 1, 2, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 13, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1
OFFSET
0,3
COMMENTS
The numerators are given in A164658.
See the W. Lang link in A164658 for this table and the rational table A164658/A164659.
FORMULA
a(n,m) = denominator(b(n,m)), with int(T(n,x),x)= sum(b(n,m)*x^m,m=1..n+1), n>=0, where T(n,x) are Chebyshevs polynomials of the first kind.
EXAMPLE
Rational table A164658(n,m)/a(n,m) = [1], [0, 1/2], [-1, 0, 2/3], [0, -3/2, 0, 1], [1, 0, -8/3, 0, 8/5],...
MATHEMATICA
row[n_] := CoefficientList[Integrate[ChebyshevT[n, x], x], x] // Rest // Denominator; Table[row[n], {n, 0, 13}] // Flatten (* Jean-François Alcover, Oct 06 2016 *)
CROSSREFS
Row sums of this triangle give A164663.
Row sums of rational triangle A164658/A164659 are given in A164660/A164661.
Sequence in context: A357943 A194086 A342723 * A057898 A094293 A338156
KEYWORD
nonn,frac,tabl,easy
AUTHOR
Wolfdieter Lang, Oct 16 2009
STATUS
approved