login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of coefficients of integrated Chebyshev polynomials T(n,x) (in increasing order of powers of x).
6

%I #10 Oct 06 2016 09:14:22

%S 1,1,2,1,1,3,1,2,1,1,1,1,3,1,5,1,2,1,1,1,3,1,1,1,1,5,1,7,1,2,1,1,1,3,

%T 1,1,1,1,3,1,1,1,7,1,9,1,2,1,1,1,1,1,1,1,5,1,1,3,1,1,1,1,1,9,1,11,1,2,

%U 1,1,1,3,1,1,1,5,1,3,1,1,1,1,1,1,1,1,1,1,11,1,13,1,2,1,1,1,3,1,1,1,1,1,3,1

%N Denominators of coefficients of integrated Chebyshev polynomials T(n,x) (in increasing order of powers of x).

%C The numerators are given in A164658.

%C See the W. Lang link in A164658 for this table and the rational table A164658/A164659.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F a(n,m) = denominator(b(n,m)), with int(T(n,x),x)= sum(b(n,m)*x^m,m=1..n+1), n>=0, where T(n,x) are Chebyshevs polynomials of the first kind.

%e Rational table A164658(n,m)/a(n,m) = [1], [0, 1/2], [-1, 0, 2/3], [0, -3/2, 0, 1], [1, 0, -8/3, 0, 8/5],...

%t row[n_] := CoefficientList[Integrate[ChebyshevT[n, x], x], x] // Rest // Denominator; Table[row[n], {n, 0, 13}] // Flatten (* _Jean-François Alcover_, Oct 06 2016 *)

%Y Row sums of this triangle give A164663.

%Y Row sums of rational triangle A164658/A164659 are given in A164660/A164661.

%K nonn,frac,tabl,easy

%O 0,3

%A _Wolfdieter Lang_, Oct 16 2009