

A164661


Denominators of row sums of triangle of rationals A164658/A164659. Definite integral of Chebyshev polynomials of the first kind: Integral_{x=0..1} T(n,x).


7



1, 2, 3, 2, 15, 6, 35, 6, 63, 10, 99, 10, 143, 14, 195, 14, 255, 18, 323, 18, 399, 22, 483, 22, 575, 26, 675, 26, 783, 30, 899, 30, 1023, 34, 1155, 34, 1295, 38, 1443, 38, 1599, 42, 1763, 42, 1935, 46, 2115, 46, 2303, 50, 2499, 50, 2703, 54, 2915, 54, 3135, 58, 3363, 58, 3599
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The numerators are given in A164660.
See the W. Lang link under A164660 for a list of the first rationals.


LINKS

Table of n, a(n) for n=0..60.
Index entries for sequences related to Chebyshev polynomials.


FORMULA

a(n) = denominator(Sum_{m=1..n+1} IT(n,m)), n>=0, with IT(n,m):= A164658(n,m)/A164659(n,m) (coefficient triangle from the indefinite integral Integral_{x} T(n,x), n>=0, in lowest terms).


EXAMPLE

Rationals A164660(n)/a(n) = [1, 1/2, 1/3, 1/2, 1/15, 1/6, 1/35, 1/6, 1/63, 1/10, 1/99, ...].


CROSSREFS

Sequence in context: A205441 A181350 A174111 * A104507 A101033 A136454
Adjacent sequences: A164658 A164659 A164660 * A164662 A164663 A164664


KEYWORD

nonn,easy,frac


AUTHOR

Wolfdieter Lang, Oct 16 2009


STATUS

approved



