The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164658 Numerators of coefficients of integrated Chebyshev polynomials T(n,x) (in increasing order of powers of x). 6
 1, 0, 1, -1, 0, 2, 0, -3, 0, 1, 1, 0, -8, 0, 8, 0, 5, 0, -5, 0, 8, -1, 0, 6, 0, -48, 0, 32, 0, -7, 0, 14, 0, -56, 0, 8, 1, 0, -32, 0, 32, 0, -256, 0, 128, 0, 9, 0, -30, 0, 72, 0, -72, 0, 128, -1, 0, 50, 0, -80, 0, 160, 0, -1280, 0, 512, 0, -11, 0, 55, 0, -616, 0, 352, 0, -1408, 0, 256, 1, 0, -24, 0, 168, 0, -512, 0, 768 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS The denominators are given in A164659. The column nr. m of the rational triangle A164658/A164659 when multiplied by m/2^(m-2) becomes (with shifted offset) the column nr. m-1 divided by 2^(m-1) of the Chebyshev T-triangle A053120 for m=1,2,3,... LINKS FORMULA a(n,m) = numerator(b(n,m)), with int(T(n,x))= sum(b(n,m)*x^m,m=1..n+1), n>=0, where T(n,x) are Chebyshevs polynomials of the first kind. EXAMPLE Rationals a(n,m)/A164659(n,m) = [1], [0, 1/2], [-1, 0, 2/3], [0, -3/2, 0, 1], [1, 0, -8/3, 0, 8/5],... MATHEMATICA row[n_] := CoefficientList[Integrate[ChebyshevT[n, x], x], x] // Rest // Numerator; Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Oct 06 2016 *) CROSSREFS Row sums of triangle give A164662. A053120: coefficients of T-polynomials. Row sums of rational triangle A164658/A164659 are given by A164660/A164661. Sequence in context: A135523 A194663 A135685 * A079067 A160271 A274912 Adjacent sequences:  A164655 A164656 A164657 * A164659 A164660 A164661 KEYWORD sign,frac,tabl,easy AUTHOR Wolfdieter Lang, Oct 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 12 14:02 EDT 2021. Contains 344949 sequences. (Running on oeis4.)