login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174263
Numerator of the n-th term of the inverse Binomial Transform of the Bernoulli sequence prefixed with 0.
0
0, 1, -5, 14, -23, 349, -499, 793, -1038, 7901, -9791, 65488, -78193, 795259, -925389, 1615811, -1841036, 67142767, -75821437, 358067518, -388783203, -521129621, 480390923, 133108162049
OFFSET
0,3
COMMENTS
The inverse binomial transform of 0, 1, -1/2, 1/6, 0, ... is A(n) = 0, 1, -5/2, 14/3, -23/3, ... The current sequence is defined by the numerators; the denominators are A100650(n).
There is a connection to the sequence b(n) = 0, 1, 1/2, 1/6, 0, -1/30, ... of modified Bernoulli numbers [b(0)=0, b(2) = -Bernoulli(1), b(n) = Bernoulli(n-1) if n <> 2] discussed in A165142: The inverse binomial transform of b(n) is c(n) = 0, 1, -3/2, 5/3, -5/3, 49/30, -49/30, ..., and c(n) - A(n) = (-1)^n*A000217(n-1).
MAPLE
read("transforms") ;
A174264 := proc(n) local b; b := [0, seq(bernoulli(i), i=0..n+1)] ; BINOMIALi(b) ; numer(op(n+1, %)) ; end proc:
seq(A174264(n), n=0..30) ; # R. J. Mathar, Jan 21 2011
CROSSREFS
Cf. A164558.
Sequence in context: A052219 A044057 A147825 * A143057 A063238 A063223
KEYWORD
sign,frac
AUTHOR
Paul Curtz, Mar 14 2010
STATUS
approved