login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A164558
Numerators of the n-th term of the binomial transform of the original Bernoulli numbers.
14
1, 3, 13, 3, 119, 5, 253, 7, 239, 9, 665, 11, 32069, 13, 91, 15, 4543, 17, 58231, 19, -168011, 21, 857549, 23, -236298571, 25, 8553259, 27, -23749436669, 29, 8615841705665, 31, -7709321024897, 33, 2577687858571, 35, -26315271552984386533, 37, 2929993913841787
OFFSET
0,2
COMMENTS
We start from the sequence A164555(i)/A027642(i) of the "original" Bernoulli numbers, i >= 0, and compute its binomial transform, which is the sequence of fractions 1, 3/2, 13/6, 3, 119/30, 5, 253/42, 7, 239/30, 9, ... The a(n) are the numerators of these fractions.
These fractions are also the successive values of Bernoulli(n,2). - N. J. A. Sloane, Nov 10 2009
(-1)^n*a(n)/A027642, with e.g.f. x/(exp(x)*(exp(x)-1)), gives the alternating row sums of the triangle of coefficients of the Bernoulli polynomials A053382/A053383 or A196838/A196839. - Wolfdieter Lang, Oct 25 2011
LINKS
FORMULA
E.g.f. for a(n)/A027642: x/(exp(-x)*(1-exp(-x))). - Wolfdieter Lang, Oct 25 2011
Let b_{n}(x) = B_{n}(x) - 2*x*[x^(n-1)]B_{n}(x), then a(n) = numerator(b_{n}(1)). - Peter Luschny, Jun 15 2012
Numerators of the polynomials b(n,x) generated by exp(x*z)*z/(1-exp(-z)) evaluated x=1. b(n,x) are the Bernoulli polynomials B(n,x) with a different sign schema, b(n,x) = (-1)^n*B(n,-x) (see the example section). In other words: a(n) = numerator((-1)^n*Bernoulli(n,-1)). a(n) = n for odd n >= 3. - Peter Luschny, Aug 18 2018
EXAMPLE
Numerators of the polynomials b(n,x) at x=1 for n >= 0. The first few are: 1, 1/2 + x, 1/6 + x + x^2, (1/2)*x + (3/2)*x^2 + x^3, -1/30 + x^2 + 2*x^3 + x^4, -(1/6)*x +(5/3)*x^3 + (5/2)*x^4 + x^5, ... - Peter Luschny, Aug 18 2018
MAPLE
read("transforms") : nmax := 40: a := BINOMIAL([seq(A164555(n)/A027642(n), n=0..nmax)]) : seq( numer(op(n, a)), n=1..nmax+1) ; # R. J. Mathar, Aug 26 2009
A164558 := n -> `if`(type(n, odd) and n > 1, n, numer((-1)^n*bernoulli(n, -1))):
seq(A164558(n), n=0..50); # Peter Luschny, Jun 15 2012, revised Aug 18 2018
MATHEMATICA
a[n_]:= Sum[(-1)^k*Binomial[n, k]*BernoulliB[k], {k, 0, n}]//Numerator;
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 08 2012 *)
PROG
(PARI) a(n) = numerator(subst(bernpol(n, x), x, 2)); \\ Michel Marcus, Mar 03 2020
(Magma)
A164558:= func< n | Numerator((&+[(-1)^j*Binomial(n, j)*Bernoulli(j): j in [0..n]])) >;
[A164558(n): n in [0..50]]; // G. C. Greubel, Feb 24 2023
(SageMath)
def A164558(n): return sum((-1)^j*binomial(n, j)*bernoulli(j) for j in range(n+1)).numerator()
[A164558(n) for n in range(51)] # G. C. Greubel, Feb 24 2023
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Paul Curtz, Aug 16 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Aug 26 2009
STATUS
approved