login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164556 Primes expressible as the sum of (at least two) consecutive primes in at least 5 ways. 3
34421, 229841, 235493, 271919, 345011, 358877, 414221, 442019, 488603, 532823, 621937, 655561, 824099, 888793, 896341, 935791, 954623, 963173, 988321, 1055969, 1083371, 1083941, 1115911, 1170857, 1261763, 1338823, 1352863, 1409299, 1444957, 1598953, 1690597 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Subsequence of A067380.

LINKS

Jon E. Schoenfield, Table of n, a(n) for n = 1..3000

FORMULA

A067375 INTERSECT A000040.

EXAMPLE

a(1) = 34421 = Sum_{i=57..127} prime(i) = Sum_{i=226..248} prime(i) = Sum_{i=527..535} prime(i) = Sum_{i=654..660} prime(i) = Sum_{i=1382..1384} prime(i) and

a(3) = 235493 = Sum_{i=50..284} prime(i) = Sum_{i=120..300} prime(i) = Sum_{i=123..301} prime(i) = Sum_{i=334..424} prime(i) = Sum_{i=7701..7703} prime(i)

are expressible in 5 ways as the sum of two or more consecutive primes.

MATHEMATICA

m=3*7!; lst={}; Do[p=Prime[a]; Do[p+=Prime[b]; If[PrimeQ[p]&&p<Prime[m]*3+8, AppendTo[lst, p]], {b, a+1, m, 1}], {a, m}]; lst1=Sort[lst]; lst={};

Do[If[lst1[[n]]==lst1[[n+1]]&&lst1[[n]]==lst1[[n+2]]&&lst1[[n]]==lst1[[n+3]]&&lst1[[n]]==lst1[[n+4]], AppendTo[lst, lst1[[n]]]], {n, Length[lst1]-4}]; Union[lst]

PROG

(Magma) M:=1695000; P:=PrimesUpTo(M); S:=[0]; for p in P do t:=S[#S]+p; if #S ge 3 then if t-S[#S-2] gt M then break; end if; end if; S[#S+1]:=t; end for; c:=[0:j in [1..M]]; for C in [2..#S-1] do if IsEven(C) then L:=1; else L:=#S-C; end if; for j in [1..L] do s:=S[j+C]-S[j]; if s gt M then break; end if; if IsPrime(s) then c[s]+:=1; end if; end for; end for; [j:j in [1..M]|c[j] ge 5]; // Jon E. Schoenfield, Dec 25 2021

CROSSREFS

Cf. A067377, A067378, A067379, A067380, A067381.

Sequence in context: A252241 A233872 A055001 * A344780 A068703 A225025

Adjacent sequences:  A164553 A164554 A164555 * A164557 A164558 A164559

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, Aug 15 2009

EXTENSIONS

Examples added by R. J. Mathar, Aug 19 2009

a(10)-a(28) from Donovan Johnson, Sep 16 2009

a(29)-a(31) from Jon E. Schoenfield, Dec 25 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 19:25 EDT 2022. Contains 354851 sequences. (Running on oeis4.)