login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164557
Numbers k such that s(k) = s(k+1), where s(k) is the sum of divisors d of k such that k/d is odd (A002131).
5
3, 6, 7, 10, 22, 31, 46, 58, 69, 82, 106, 127, 140, 154, 160, 166, 178, 226, 262, 286, 346, 358, 382, 466, 478, 502, 562, 586, 718, 748, 781, 838, 862, 886, 982, 1001, 1018, 1066, 1186, 1282, 1299, 1306, 1318, 1366, 1438, 1486, 1522, 1614, 1618, 1672, 1704, 1822
OFFSET
1,1
LINKS
Daeyeoul Kim and Abdelmejid Bayad, Convolution identities for twisted Eisenstein series and twisted divisor functions, Fixed Point Theory and Applications 2013, No. 1 (2013), Article 81, alternative link.
Daeyeoul Kim, Nazli Yildiz Ikikardes, Yan Li, and Lianrong Ma, On the Problem sigma_od(n) = sigma_od(n+ 1), Filomat, Vol. 33, No. 2 (2019), pp. 543-559.
EXAMPLE
3 is in the sequence since A002131(3) = A002131(3 + 1) = 4.
MATHEMATICA
f[p_, e_] := If[p == 2, p^e, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); s1=0; seq={}; Do[s2 = s[n]; If[s2 == s1, AppendTo[seq, n-1]]; s1 = s2, {n, 1, 2000}]; seq
PROG
(Magma) v:=[&+[d:d in Divisors(m)|IsOdd(Floor(m/d))] :m in [1..2000]]; [k:k in [1..#v-1]| v[k] eq v[k+1]]; // Marius A. Burtea, Aug 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 12 2019
STATUS
approved