login
A164557
Numbers k such that s(k) = s(k+1), where s(k) is the sum of divisors d of k such that k/d is odd (A002131).
5
3, 6, 7, 10, 22, 31, 46, 58, 69, 82, 106, 127, 140, 154, 160, 166, 178, 226, 262, 286, 346, 358, 382, 466, 478, 502, 562, 586, 718, 748, 781, 838, 862, 886, 982, 1001, 1018, 1066, 1186, 1282, 1299, 1306, 1318, 1366, 1438, 1486, 1522, 1614, 1618, 1672, 1704, 1822
OFFSET
1,1
LINKS
Daeyeoul Kim and Abdelmejid Bayad, Convolution identities for twisted Eisenstein series and twisted divisor functions, Fixed Point Theory and Applications 2013, No. 1 (2013), Article 81, alternative link.
Daeyeoul Kim, Nazli Yildiz Ikikardes, Yan Li, and Lianrong Ma, On the Problem sigma_od(n) = sigma_od(n+ 1), Filomat, Vol. 33, No. 2 (2019), pp. 543-559.
EXAMPLE
3 is in the sequence since A002131(3) = A002131(3 + 1) = 4.
MATHEMATICA
f[p_, e_] := If[p == 2, p^e, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); s1=0; seq={}; Do[s2 = s[n]; If[s2 == s1, AppendTo[seq, n-1]]; s1 = s2, {n, 1, 2000}]; seq
PROG
(Magma) v:=[&+[d:d in Divisors(m)|IsOdd(Floor(m/d))] :m in [1..2000]]; [k:k in [1..#v-1]| v[k] eq v[k+1]]; // Marius A. Burtea, Aug 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 12 2019
STATUS
approved