login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253685 Primes r with A253683(n) > A253684(n) > r such that (A253683(n), A253684(n), r) is a Wieferich triple. 3
3, 13, 2, 1657, 2, 83, 5, 431, 5, 199, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

In analogy to a Wieferich pair, a set of three primes p, q, r can be called a 'Wieferich triple' if its members satisfy either of the following two sets of congruences:

p^(q-1) == 1 (mod q^2), q^(r-1) == 1 (mod r^2), r^(p-1) == 1 (mod p^2)

p^(r-1) == 1 (mod r^2), r^(q-1) == 1 (mod q^2), q^(p-1) == 1 (mod p^2)

a(9) must have A253683(n) > 121637. - Felix Fröhlich, Jun 18 2016

a(12) must have A253683(n) > 5*10^6. - Giovanni Resta, Jun 20 2016

LINKS

Table of n, a(n) for n=1..11.

Wikipedia, Wieferich pair

PROG

(PARI) forprime(p=1, , forprime(q=1, p, forprime(r=1, q, if((Mod(p, q^2)^(q-1)==1 && Mod(q, r^2)^(r-1)==1 && Mod(r, p^2)^(p-1)==1) || (Mod(p, r^2)^(r-1)==1 && Mod(r, q^2)^(q-1)==1 && Mod(q, p^2)^(p-1)==1), print1(r, ", ")))))

CROSSREFS

Cf. A124121, A124122.

Cf. A253683, A253684.

Sequence in context: A068697 A010258 A107774 * A122478 A164558 A347821

Adjacent sequences:  A253682 A253683 A253684 * A253686 A253687 A253688

KEYWORD

nonn,hard,more

AUTHOR

Felix Fröhlich, Jan 09 2015

EXTENSIONS

a(8) from Felix Fröhlich, Jun 18 2016

Name edited by Felix Fröhlich, Jun 18 2016

a(9)-a(11) from Giovanni Resta, Jun 20 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 11:18 EDT 2021. Contains 348048 sequences. (Running on oeis4.)