login
A363270
The result, starting from n, of Collatz steps x -> (3x+1)/2 while odd, followed by x -> x/2 while even.
3
1, 1, 1, 1, 1, 3, 13, 1, 7, 5, 13, 3, 5, 7, 5, 1, 13, 9, 11, 5, 1, 11, 5, 3, 19, 13, 31, 7, 11, 15, 121, 1, 25, 17, 5, 9, 7, 19, 67, 5, 31, 21, 49, 11, 17, 23, 121, 3, 37, 25, 29, 13, 5, 27, 47, 7, 43, 29, 67, 15, 23, 31, 91, 1, 49, 33, 19, 17, 13, 35, 121, 9, 55
OFFSET
1,6
COMMENTS
Each x -> (3x+1)/2 step decreases the number of trailing 1-bits by 1 so A007814(n+1) of them, and the result of those steps is 2*A085062(n).
LINKS
FORMULA
a(n) = OddPart((3/2)^A007814(n+1)*(n+1) - 1), where OddPart(t) = A000265(t).
a(n) = OddPart(A085062(n)).
MATHEMATICA
OddPart[x_] := x / 2^IntegerExponent[x, 2]
Table[OddPart[(3/2)^IntegerExponent[i + 1, 2] * (i + 1) - 1], {i, 100}]
PROG
(C) int a(int n) {
while (n & 1) n += (n >> 1) + 1;
while (!(n & 1)) n >>= 1;
return n;
}
(PARI) oddpart(n) = n >> valuation(n, 2); \\ A000265
a(n) = oddpart((3/2)^valuation(n+1, 2)*(n+1) - 1); \\ Michel Marcus, May 24 2023
CROSSREFS
Cf. A160541 (number of iterations).
Cf. A075677.
Sequence in context: A215240 A068697 A010258 * A107774 A253685 A122478
KEYWORD
nonn,easy
AUTHOR
Dustin Theriault, May 23 2023
STATUS
approved