login
A363272
Irregular triangle read by rows: T(n,k) = number of unlabeled binary rooted trees with n leaves, where some child tree has k leaves, 1 <= k <= n/2.
2
1, 1, 1, 1, 2, 1, 3, 2, 1, 6, 3, 2, 11, 6, 3, 3, 23, 11, 6, 6, 46, 23, 11, 12, 6, 98, 46, 23, 22, 18, 207, 98, 46, 46, 33, 21, 451, 207, 98, 92, 69, 66, 983, 451, 207, 196, 138, 138, 66, 2179, 983, 451, 414, 294, 276, 253, 4850, 2179, 983, 902, 621, 588, 506, 276
OFFSET
2,5
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..2501 (rows 2..100)
FORMULA
T(n,k) = A001190(k) * A001190(n-k) if k < n/2; otherwise
T(2k,k) = A001190(k) * (A001190(k) + 1) / 2 = A000217(A001190(n)).
Sum_{k >= 1} T(n,k) = A001190(n).
Sum_{i >= k} T(n,i) = A363273(n,k).
Sum_{i <= n-1, i+j >= n} T(i,j) = A000671(n-2).
EXAMPLE
Table begins:
1;
1;
1, 1;
2, 1;
3, 2, 1;
6, 3, 2;
11, 6, 3, 3;
23, 11, 6, 6;
46, 23, 11, 12, 6;
98, 46, 23, 22, 18;
...
PROG
(PARI)
T(n)={my(A=vector(n), R=vector(n)); A[1]=1; R[1]=[]; for(i=2, n, R[i] = vector(i\2, j, if(2*j<i, A[j] * A[i-j], A[i/2] * (A[i/2] + 1)/2)); A[i] = vecsum(R[i])); R}
{ my(A=T(12)); for(n=2, #A, print(A[n])) } \\ Andrew Howroyd, Jan 01 2024
CROSSREFS
Row sums are A001190.
First column k=1 is T(n,1) = A001190(n-1).
Sequence in context: A191528 A191788 A070979 * A054098 A132089 A321155
KEYWORD
nonn,tabf
AUTHOR
Harry Richman, May 24 2023
EXTENSIONS
Terms a(32) and beyond from Andrew Howroyd, Jan 01 2024
STATUS
approved