login
A253688
The total number of pentagons in a variant of pentagon expansion (vertex-to-vertex, two consecutive vertices and one isolated vertex) after n iterations.
6
1, 4, 10, 21, 39, 64, 94, 129, 171, 218, 272, 331, 397, 468, 546, 629, 719, 814, 916, 1023, 1137, 1256, 1382, 1513, 1651, 1794, 1944, 2099, 2261, 2428, 2602, 2781, 2967, 3158, 3356, 3559, 3769, 3984, 4206, 4433, 4667, 4906, 5152, 5403, 5661, 5924, 6194, 6469, 6751, 7038
OFFSET
1,2
COMMENTS
Two star shaped icosagons appearing at n >= 6. See illustration.
FORMULA
Conjectures from Colin Barker, Jan 09 2015: (Start)
a(n) = (53-(-1)^n-38*n+12*n^2)/4 for n>5.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>9.
G.f.: -x*(2*x^8-2*x^7-2*x^6+2*x^5+4*x^4+3*x^3+2*x^2+2*x+1) / ((x-1)^3*(x+1)).
(End)
PROG
(PARI)
{
a=1; d1=0; p=a; print1(a, ", "); \\5v3b
for(n=2, 100,
if(n<3, d1=2,
if(n<4, d1=3,
if(n<5, d1=5,
if(n<6, d1=7,
if(n<7, d1=7,
if(n<8, d1=5,
if(Mod(n, 2)==0, d1=5, d1=7
)
)
)
)
)
)
);
a=a+d1; p=p+a;
print1(p, ", ")
)
}
CROSSREFS
Cf. A253687 (side-to-side).
Sequence in context: A358042 A008121 A253687 * A049480 A216172 A055908
KEYWORD
nonn
AUTHOR
Kival Ngaokrajang, Jan 09 2015
STATUS
approved