login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of permutations of [n] with k ordered cycles such that equal-sized cycles are ordered with increasing least elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14

%I #16 Oct 18 2018 15:43:05

%S 1,0,1,0,1,1,0,2,6,1,0,6,19,18,1,0,24,100,105,40,1,0,120,508,1005,430,

%T 75,1,0,720,3528,6762,6300,1400,126,1,0,5040,24876,61572,62601,28700,

%U 3822,196,1,0,40320,219168,558548,706608,431445,105336,9114,288,1

%N Number T(n,k) of permutations of [n] with k ordered cycles such that equal-sized cycles are ordered with increasing least elements; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%C Each cycle is written with the smallest element first and equal-sized cycles are arranged in increasing order of their first elements.

%H Alois P. Heinz, <a href="/A285849/b285849.txt">Rows n = 0..140, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>

%e T(3,1) = 2: (123), (132).

%e T(3,2) = 6: (1)(23), (23)(1), (2)(13), (13)(2), (3)(12), (12)(3).

%e T(3,3) = 1: (1)(2)(3).

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 1, 1;

%e 0, 2, 6, 1;

%e 0, 6, 19, 18, 1;

%e 0, 24, 100, 105, 40, 1;

%e 0, 120, 508, 1005, 430, 75, 1;

%e 0, 720, 3528, 6762, 6300, 1400, 126, 1;

%e 0, 5040, 24876, 61572, 62601, 28700, 3822, 196, 1;

%p b:= proc(n, i, p) option remember; expand(`if`(n=0 or i=1,

%p (p+n)!/n!*x^n, add(b(n-i*j, i-1, p+j)*(i-1)!^j*combinat

%p [multinomial](n, n-i*j, i$j)/j!^2*x^j, j=0..n/i)))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):

%p seq(T(n), n=0..12);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_, p_] := b[n, i, p] = Expand[If[n == 0 || i == 1, (p + n)!/n!*x^n, Sum[b[n - i*j, i - 1, p + j]*(i - 1)!^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!^2*x^j, {j, 0, n/i}]]];

%t T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n, 0]];

%t Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Apr 28 2018, after _Alois P. Heinz_ *)

%Y Columns k=0-10 give: A000007, A104150, A285853, A285854, A285855, A285856, A285857, A285858, A285859, A285860, A285861.

%Y Row sums give A196301.

%Y Main diagonal and first lower diagonal give: A000012, A002411.

%Y T(2n,n) gives A285862.

%Y Cf. A132393, A285824.

%K nonn,tabl

%O 0,8

%A _Alois P. Heinz_, Apr 27 2017