login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317461 Number of nX4 0..1 arrays with every element unequal to 2, 3, 4, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero. 1
0, 18, 107, 1429, 16809, 203786, 2461839, 29797355, 360606527, 4364496811, 52825184177, 639366642815, 7738549997408, 93663310571938, 1133651240708258, 13721116612293827, 166073160483093122, 2010061975098663581 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Column 4 of A317465.

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 9*a(n-1) +38*a(n-2) +50*a(n-3) -488*a(n-4) -2049*a(n-5) -2146*a(n-6) +3438*a(n-7) +15496*a(n-8) +15335*a(n-9) -3611*a(n-10) -24529*a(n-11) -21899*a(n-12) +3894*a(n-13) +16022*a(n-14) -45*a(n-15) -19486*a(n-16) -16352*a(n-17) +4936*a(n-18) +14225*a(n-19) +7338*a(n-20) +486*a(n-21) +107*a(n-22) +1478*a(n-23) +54*a(n-24) -1044*a(n-25) -384*a(n-26) +112*a(n-27) +64*a(n-28) for n>29

EXAMPLE

Some solutions for n=5

..0..0..0..1. .0..1..0..1. .0..0..0..0. .0..0..1..0. .0..1..0..0

..1..1..0..1. .1..1..0..1. .1..1..1..1. .1..1..0..1. .0..1..1..1

..1..0..1..1. .0..1..0..0. .0..1..0..1. .0..0..0..1. .1..0..1..0

..1..0..0..0. .1..0..1..0. .1..1..0..0. .0..0..1..0. .1..0..1..1

..0..1..0..1. .1..0..1..0. .0..0..1..1. .1..1..1..0. .0..1..1..0

CROSSREFS

Cf. A317465.

Sequence in context: A285854 A123277 A123595 * A225219 A002165 A008654

Adjacent sequences:  A317458 A317459 A317460 * A317462 A317463 A317464

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jul 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 03:01 EDT 2020. Contains 333312 sequences. (Running on oeis4.)