login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120022
a(n) = A120020(n)/n = coefficient of x^n in the n-th self-composition of the g.f. of A120010, divided by n, for n>=1.
2
1, 1, 3, 17, 142, 1558, 21155, 342584, 6448217, 138392304, 3336869488, 89325958048, 2629214627421, 84408934941424, 2935694381925743, 109967573757472768, 4414292541216287516, 189054708982869449056
OFFSET
1,3
MATHEMATICA
a[n_] := Sum[((-1)^(j-i) n^(i-2) Binomial[2n-2j, n-j] Binomial[n+i-j, j-i] Binomial[n+i-j-1, i-1])/(n-j+1), {j, 1, n}, {i, 1, j}]; Array[a, 18] (* Jean-François Alcover, Nov 14 2016 *)
PROG
(PARI) a(n)=polcoeff((1-sqrt(1-4*x*(1-x)/(1-(n+1)*x*(1-x)+x*O(x^n))))/2, n)/n
(PARI) /* Alternate Formula: */ a(n)=sum(j=1, n, binomial(2*n-2*j, n-j)/(n-j+1)* sum(i=1, j, (-1)^(j-i)*binomial(n-j+i, j-i)*binomial(n-j+i-1, i-1)*n^(i-2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 14 2006
STATUS
approved