login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087455 Expansion of (1 - x)/(1 - 2*x + 3*x^2) in powers of x. 16
1, 1, -1, -5, -7, 1, 23, 43, 17, -95, -241, -197, 329, 1249, 1511, -725, -5983, -9791, -1633, 26107, 57113, 35905, -99529, -306773, -314959, 290401, 1525679, 2180155, -216727, -6973919, -13297657, -5673557, 28545857, 74112385, 62587199, -97162757, -382087111, -472685951 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Type 2 generalized Gaussian Fibonacci integers.

Binomial transform of A077966. - Philippe Deléham, Dec 02 2008

The real component of Q^n, where Q is the quaternion 1 + 0*i + 1*j + 1*k. - Stanislav Sykora, Jun 11 2012

If entries are multiplied by 2*(-1)^n, which gives 2, -2, -2, 10, -14, -2, 46, -86, 34, 190, -482, 394, ..., we obtain the Lucas V(-2,3) sequence. - R. J. Mathar, Jan 08 2013

The real component of (1 + sqrt(-2))^n. - Giovanni Resta, Apr 01 2014

It is an open question whether or not this sequence satisfies Benford's law [Berger-Hill, 2017; Arno Berger, email, Jan 06 2017]. - N. J. A. Sloane, Feb 08 2017

Given an alternated cubic honeycomb with a planar dissection along a plane from edge to opposite edge of the containing cube. The sequence (1 + sqrt(-2))^n contains a real component representing distance along the edge of the tetrahedron/octahedron and an imaginary component representing the orthogonal distance along the sqrt(2) axis in a tetrahedron/octahedron, this generates a unique cevian (line from the apical vertex to a vertex on the triangular tiling composing the opposite face) in this plane with length (sqrt(3))^n. - Jason Pruski, Sep 04 2017, Jan 08 2018

From Peter Bala, Apr 01 2018: (Start)

This sequence is the Lucas sequence V(n,2,3). The companion Lucas sequence U(n,2,3) is A088137.

Define a binary operation o on rational numbers by x o y = (x + y)/(1 - 2*x*y). This is a commutative and associative operation with identity 0. Then 1 o 1 o ... o 1 (n terms) = A088137(n)/A087455(n). Cf. A025172 and A127357. (End)

REFERENCES

Arno Berger and Theodore P. Hill. An Introduction to Benford's Law. Princeton University Press, 2015.

S. Severini, A note on two integer sequences arising from the 3-dimensional hypercube, Technical Report, Department of Computer Science, University of Bristol, Bristol, UK (October 2003).

LINKS

Robert Israel, Table of n, a(n) for n = 0..3500

A. Berger and T. P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.

F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2 , p. 251-267. See Theorem 2 p. 259.

C. Dement, The Math Forum.

M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.

Wikipedia, Lucas sequence

Index entries for linear recurrences with constant coefficients, signature (2,-3)

Index entries for sequences related to Benford's law

FORMULA

a(n) = (3^(n/2))*cos(n*arctan(sqrt(2))). - Paul Barry, Oct 23 2003

a(n) = 2a(n-1) - 3a(n-2); a(n) = (-1)^n*Sum_{m=0..n} binomial(n, m)*Sum_{k=0..n} binomial(m, 2k)2^(m-k); binomial transform of 1/(1+2x^2), or (1, 0, -2, 0, 4, 0, -8, 0, 16, ...). - Paul Barry, Sep 03 2004

a(n) = sqrt(ves(x^n))/3. - Creighton Dement, Jul 31 2004

a(n+1) = a(n+2) - 2*A088137(n+1), a(n+1) = A088137(n+2) - A088137(n+1). - Creighton Dement, Oct 28 2004

a(n) = 2*a(n-1) - 3*a(n-2), n > 1; a(n) = upper left and lower right terms of [1,-2, 1,1]^n. - Gary W. Adamson, Mar 28 2008

a(n) = Sum_{k=0..n} A098158(n,k)*(-2)^(n-k). - Philippe Deléham, Nov 14 2008

a(n) = Sum_{k=0..n} A124182(n,k)*(-3)^(n-k). - Philippe Deléham, Nov 15 2008

a(n) = (1/2)*((1 - i*sqrt(2))^n + (1 + i*sqrt(2))^n), with n >= 0 and i=sqrt(-1). - Paolo P. Lava, Nov 20 2008

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(2*k+1)/(x*(2*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013

a(n) = a(-n) * 3^n for all n in Z. - Michael Somos, Aug 25 2014

EXAMPLE

G.f. = 1 + x - x^2 - 5*x^3 - 7*x^4 + x^5 + 23*x6 + 43*x^7 + 17*x^8 - 95*x^9 + ...

MAPLE

Digits:=100; a:=n->round(abs(evalf((3^(n/2))*cos(n*arctan(sqrt(2))))));

# alternative:

a:= gfun:-rectoproc({a(n) = 2*a(n-1) - 3*a(n-2), a(0)=1, a(1)=1}, a(n), remember):

map(a, [$0..100]); # Robert Israel, Jun 23 2015

MATHEMATICA

CoefficientList[Series[(1-x)/(1-2*x+3*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 01 2014 *)

a[ n_] := ChebyshevT[ n, 1/Sqrt[3]] Sqrt[3]^n // Simplify; (* Michael Somos, May 15 2015 *)

PROG

(PARI) {a(n) = real( (1 + quadgen(-8))^n )}; /* Michael Somos, Jul 26 2006 */

(PARI) {a(n) = subst( poltchebi(n), 'x, quadgen(12) / 3) * quadgen(12)^n}; /* Michael Somos, Jul 26 2006 */

(PARI) a(n)=simplify(polchebyshev(n, , quadgen(12)/3)*quadgen(12)^n) \\ Charles R Greathouse IV, Jun 26 2013

CROSSREFS

Cf. A048473, A084102, A088137, A088138, A088137, A025172, A127357.

Sequence in context: A108763 A061415 A196847 * A294403 A192040 A117759

Adjacent sequences:  A087452 A087453 A087454 * A087456 A087457 A087458

KEYWORD

easy,sign

AUTHOR

Simone Severini, Oct 23 2003

EXTENSIONS

The explicit formula was given by Paul Barry.

Corrected and extended by N. J. A. Sloane, Aug 01 2004

More terms from Creighton Dement, Jul 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 09:23 EST 2018. Contains 317279 sequences. (Running on oeis4.)